Giải SBT Toán 8 KNTT Bài 16. Đường trung bình của tam giác có đáp án
32 người thi tuần này 4.6 437 lượt thi 4 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Do MA = MB = 3 nên M là trung điểm của AB;
NA = NC = 4,5 nên N là trung điểm của AC.
Xét ∆ABC có: M, N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của ∆ABC.
Suy ra (tính chất đường trung bình của tam giác).
Vậy x = 5.
b) Ta có HI ⊥ PN và MN ⊥ PN nên HI // MN.
Xét ∆MNP có: I là trung điểm của PN (PI = IN = 4) và HI // MN nên H là trung điểm của PM.
Do đó HM = HP = 5
Vậy y = 5.
Lời giải

Xét ∆DEF có: H là trung điểm DE; K là trung điểm DF nên HK là đường trung bình của ∆DEF.
Suy ra và HK // EF (tính chất đường trung bình của tam giác)
Mà (do I là trung điểm của EF) nên HK = EI.
Xét tứ giác HKIE có HK = EI và HK // EI (do HK // EF) nên tứ giác HKIE là hình bình hành.
Lời giải

Xét ∆ABC có: E là trung điểm AB; D là trung điểm AC nên DE là đường trung bình của ∆ABC.
Suy ra và ED // BC (tính chất đường trung bình của tam giác).
Xét ∆GBC có: I là trung điểm GB; K là trung điểm GC nên IK là đường trung bình của ∆GBC.
Suy ra và IK // BC (tính chất đường trung bình của tam giác)
Ta có: ED // BC và IK // BC nên ED // IK.
, nên ED = IK.
Xét tứ giác EDKI có ED // IK và ED = IK nên tứ giác EDKI là hình bình hành
Suy ra EI = DK.
Lời giải

• Xét ∆ABC có: D, E lần lượt là trung điểm của AB và BC nên DE là đường trung bình của ∆ABC.
Suy ra và DE // AC (tính chất đường trung bình của tam giác).
Xét ∆ADC có: G, F lần lượt là trung điểm của AD và CD nên GF là đường trung bình của ∆ADC.
Suy ra và GF // AC (tính chất đường trung bình của tam giác).
Khi đó ta có và DE // GF // AC
Xét tứ giác DEFG có DE = GF và DE // GF nên DEFG là hình bình hành.
• Xét ∆ABD có: G là trung điểm AD; D là trung điểm AB nên GD là đường trung bình của ∆ABD.
Suy ra (tính chất đường trung bình của tam giác).
Mà ABCD là hình chữ nhật nên AC = BD
Do đó hay DE = DG.
Hình bình hành DEFG có DE = DG nên là hình thoi.
Chú ý:Ngoài cách trên, ta có thể chứng minh DEFG là hình thoi bằng cách chứng minh bốn cạnh bằng nhau:
87 Đánh giá
50%
40%
0%
0%
0%