Giải VTH Toán 8 KNTT Bài 6. Hiệu hai bình phương, bình phương của một tổng hay một hiệu có đáp án

28 người thi tuần này 4.6 619 lượt thi 14 câu hỏi

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Đẳng thức nào sau đây là hằng đẳng thức?

A. a(a2 + 1) = a3 + 1.

B. a2 + 1 = 2a.

C. (a + b)(a – b) = a2 – b2.

D. (a + 1)2 = a2 + 2a – 1.

Lời giải

Đáp án đúng là: C

Đẳng thức (a + b)(a – b) = a2 – b2 là hằng đẳng thức.

Câu 2

Biểu thức x2x+14 được viết dưới dạng bình phương của một hiệu:

A. (x – 1)2.

B. x122.

C. 2x122.

D. 12x12.

Lời giải

Đáp án đúng là: B

Ta có x2x+14=x22.12.x+122=x122.

Câu 3

Đa thức 4x2 – 1 được viết dưới dạng tích của hai đa thức

A. 2x – 1 và 2x + 1.

B. x – 1 và 4x + 1.

C. 2x – 1 và 2x – 1.

D. x + 1 và 4x – 1.

Lời giải

Đáp án đúng là: B

Ta có 4x2 – 1 = (2x)2 – 12 = (2x – 1)(2x + 1).

Câu 4

Khẳng định nào sau đây là đúng?

A. (A – B)(A – B) = A2 + 2AB + B2.

B. (A + B)(A + B) = A2 – 2AB + B2.

C. (A + B)(A – B) = A2 + B2.

D. (A + B)(A – B) = A2 – B2.

Lời giải

Đáp án đúng là: D

Ta có (A + B)(A – B) = A2 − B2.

Câu 5

Điền các từ thích hợp vào chỗ trống:

a) Nếu hai biểu thức (đại số) A và B luôn cùng nhận giá trị bằng nhau với mọi giá trị của biến thì ta nói A = B là một ...................................................................................................

b) Biểu thức (a + b)2 = a2 + 2ab + b2 là một .........................................................................

Lời giải

a) Nếu hai biểu thức (đại số) A và B luôn cùng nhận giá trị bằng nhau với mọi giá trị của biến thì ta nói A = B là một hằng đẳng thức.

b) Biểu thức (a + b)2 = a2 + 2ab + b2 là một bình phương của một tổng.

Câu 6

Những đẳng thức nào sau đây là hằng đẳng thức?

a) x + 2 = 3x + 1.

b) 2x(x + 1) = 2x2 + 2x.

c) (a + b)a = a2 + ba.

d) a – 2 = 2a + 1.

Lời giải

Những đẳng thức b và c là hẳng đẳng thức.

Những đẳng thức a và d không là hằng đẳng thức.

Câu 7

Thay    ?    bằng biểu thức thích hợp.

a) (x – 3y)(x + 3y) = x2 −    ?   ;

b) (2x – y)(2x + y) = 4   ?    – y2.

c) x2 + 8xy +    ?    =    ?     +4y2.

d) ? – 12xy + 9y2 = 2x     ?   2.

Lời giải

a) 9y2.

b) x2.

c) 16y2; x.

d) 4x2; 3y.

Câu 8

Tính nhanh

a) 54 . 66.

b) 2032.

Lời giải

a) Ta có 54 . 66 = (60 – 6)(60 + 6) = 602 – 62 = 360 – 36 = 324.

b) Ta có 2032 = (200 + 3)2 = 2002 + 2 . 200 . 3 + 32

= 40 000 + 1 200 + 9 = 41 209.

Câu 9

Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a) x2 + 4x + 4.

b) 16a2 – 16ab + 4b2.

Lời giải

a) Ta có x2 + 4x + 4 = x2 + 2.2.x + 22 = (x + 2)2.

b) Ta có 16a2 – 16ab + 4b2 = (4a)2 – 2.4a.2b + (2b)2 = (4a – 2b)2.

Câu 10

Rút gọn các biểu thức:

a) (x – 3y)2 – (x + 3y)2.

b) (3x + 4y)2 + (4x – 3y)2.

Lời giải

a) Ta có (x – 3y)2 – (x + 3y)2

= (x2 – 6xy + 9y2) – (x2 + 6xy + 9y2)

= (x2 – x2) + (−6xy – 6xy) + (9y2 – 9y2)

= −12xy.     

b) Ta có (3x + 4y)2 + (4x – 3y)2

= [(3x)2 + 2.(3x).(4y) + (4y)2] + [(4x)2 – 2.(4x).(3y) + (3y)2]

= 9x2 + 24xy + 16y2 + 16x2 – 24xy + 9y2

= (9x2 + 16x2) + (24xy – 24xy) + (16y2 + 9y2)

= 25x2 + 25y2.

Câu 11

Chứng minh rằng với mọi số tự nhiên n, ta có: (n + 2)2 – n2 chia hết cho 4.

Lời giải

Ta có (n + 2)2 – n2 = (n2 + 4n + 4) – n2 = 4n + 4.

Vì 4 4 nên tích 4n chia hết cho 4.

Vậy (n + 2)2 – n2 chia hết cho 4.

Câu 12

Tính nhanh

a) 1012 – 1.

b) 20032 – 9.

Lời giải

a) Ta có 1012 – 1 = 1012 – 12 = (101 – 1)(101 + 1)

= 100 . 102 = 10 200.

b) Ta có 20032 – 9 = 20032 – 32 = (2003 – 3)(2003 + 3)

= 2000 . 2006 = 4 012 000.

Câu 13

Biết số tự nhiên a chia 3 dư 2. Chứng minh rằng a2 chia 3 dư 1.

Lời giải

Vì a chia 3 dư 2 nên ta có thể viết a = 3n + 2, n ℕ. Ta có

a2 = (3n + 2)2 = 9n2 + 12n + 4

= 9n2 + 12n + 3 + 1

= 3.(3n2 + 4n + 1) + 1.

Vì 3 3 nên tích 3.(3n2 + 4n + 1) chia hết cho 3 và do đó 3.(3n2 + 4n + 1) + 1 chia 3 dư 1. Vậy a2 chia 3 dư 1.

Câu 14

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

A = (x + 2)2 – (x – 2)2 – 8x.

Lời giải

Ta có A = (x + 2)2 – (x – 2)2 – 8x

= x2 + 4x + 4 – x2 + 4x – 4 – 8x

= (x2 – x2) + (4x + 4x – 8x) + (4 – 4) = 0.

4.6

124 Đánh giá

50%

40%

0%

0%

0%