Giải SBT Toán 8 KNTT Bài 13: Hình chữ nhật có đáp án
50 người thi tuần này 4.6 648 lượt thi 7 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
10 câu Trắc nghiệm Toán 8 Bài 4: Phương trình tích có đáp án (Vận dụng)
15 câu Trắc nghiệm Toán 8: Ôn tập chương 2 có đáp án (Thông hiểu)
5 câu Trắc nghiệm Toán 8 Bài 8: Đối xứng tâm có đáp án (Nhận biết)
10 câu Trắc nghiệm Toán 8 Bài 5: Phương trình chứa ẩn ở mẫu có đáp án (Vận dụng)
14 câu Trắc nghiệm Toán 8 Bài 3: Phương trình bậc nhất một ẩn và cách giải có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) • Tứ giác AHBD có M là trung điểm của AB và HD nên là hình bình hành.
Do AH là đường cao của ∆ABC nên AH ⊥ BC, suy ra
Hình bình hành AHBD có nên AHBD là hình chữ nhật.
• Tương tự, tứ giác AHCE có N là trung điểm của AC và HE nên là hình bình hành.
Lại có nên AHCE là hình chữ nhật.
• Do AHBD, AHCE là các hình chữ nhật (chứng minh trên)
Suy ra
Tứ giác BCED có là các góc ở đỉnh nên BCED là hình chữ nhật.
Lời giải
b) Vì ADBH, AECH là các hình chữ nhật nên AD = BH, AE = HC, AD // BC, AE // BC
Mà ∆ABC cân tại A có AH là đường cao nên đồng thời là đường trung tuyến, do đó H là trung điểm của BC, suy ra BH = HC.
Từ đó, AD = BH = HC = AE
Tứ giác ADHC có: AD // HC, AD = HC nên ADHC là hình bình hành.
Tứ giác ABHE có: AE // BH, AE = BH nên ABHE là hình bình hành
Vì ADHC là hình bình hành nên CD cắt AH tại trung điểm của AH.
Vì AEHB là hình bình hành nên BE cắt AH tại trung điểm của AH.
Vậy giao điểm của BE và CD là trung điểm của AH.
Lời giải
c) Do AHBD, AHCE là các hình chữ nhật nên AB = DH, AC = HE (hai đường chéo bằng nhau).
Mà AB = AC (do ∆ABC cân tại A) nên DH = HE.
Do BCED là hình chữ nhật (chứng minh câu a) nên CD = BE (hai đường chéo bằng nhau).
Lời giải

Vì BM, CN là trung tuyến của ∆ABC nên M, N lần lượt là trung điểm của AC, AB.
Do M là trung điểm của AC và của GH nên AGCH là hình bình hành
Từ đó HC = AG và HC // AG. (1)
Do N là trung điểm của AB và của GK nên AGBK là hình bình hành
Suy ra KB = AG và KB // AG. (2)
Từ (1) và (2) suy ra BK = CH và BK // CH.
Tứ giác BCHK có hai cạnh đối BK, CH bằng nhau và song song nên là một hình bình hành.
Vì tam giác ABC cân tại A nên trung tuyến AG là đường cao tức AG ⊥ BC hay KB ⊥ BC, suy ra BCHK là hình chữ nhật.
Lời giải

a) Cho tam giác ABC vuông tại A. Do B là góc nhọn, có điểm M thuộc BC sao cho ; tam giác ABM cân tại M nên MA = MB.
Do nên suy ra , do đó tam giác ACM cân tại M tức là MA = MC.
Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.