Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Vì ADBH, AECH là các hình chữ nhật nên AD = BH, AE = HC, AD // BC, AE // BC
Mà ∆ABC cân tại A có AH là đường cao nên đồng thời là đường trung tuyến, do đó H là trung điểm của BC, suy ra BH = HC.
Từ đó, AD = BH = HC = AE
Tứ giác ADHC có: AD // HC, AD = HC nên ADHC là hình bình hành.
Tứ giác ABHE có: AE // BH, AE = BH nên ABHE là hình bình hành
Vì ADHC là hình bình hành nên CD cắt AH tại trung điểm của AH.
Vì AEHB là hình bình hành nên BE cắt AH tại trung điểm của AH.
Vậy giao điểm của BE và CD là trung điểm của AH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai đường trung tuyến BM, CN của tam giác ABC cân tại A cắt nhau tại G. Gọi H, K lần lượt là điểm sao cho trung điểm của GH là M, trung điểm của GK là N. Chứng minh tứ giác BCHK là hình chữ nhật.
Câu 2:
Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE.
a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật.
Câu 3:
Sử dụng tính chất hai đường chéo của hình chữ nhật bằng nhau để chứng minh a), b) của ý 1.
Câu 4:
Sử dụng tính chất tổng các góc của một tam giác bằng 180° để chứng minh:
a) Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
Câu 6:
b) Tam giác ABC có đường trung tuyến AM bằng nửa BC thì vuông tại A.
về câu hỏi!