Câu hỏi:

12/07/2024 2,071 Lưu

Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng: El = DK.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng: El = DK.  (ảnh 1)

Xét ∆ABC có: E là trung điểm AB; D là trung điểm AC nên DE là đường trung bình của ∆ABC.

Suy ra ED=12BC và ED // BC (tính chất đường trung bình của tam giác).

Xét ∆GBC có: I là trung điểm GB; K là trung điểm GC nên IK là đường trung bình của ∆GBC.

Suy ra IK=12BC và IK // BC (tính chất đường trung bình của tam giác)

Ta có: ED // BC và IK // BC nên ED // IK.

           ED=12BC, IK=12BC nên ED = IK.

Xét tứ giác EDKI có ED // IK và ED = IK nên tứ giác EDKI là hình bình hành

Suy ra EI = DK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác DEF. Gọi H, K, I lần lượt là các trung điểm của DE, DF và EF. Chứng minh rằng tứ giác HKIE là hình bình hành.  (ảnh 1)

Xét ∆DEF có: H là trung điểm DE; K là trung điểm DF nên HK là đường trung bình của ∆DEF.

Suy ra HK=12EF và HK // EF (tính chất đường trung bình của tam giác)

EI=12EF (do I là trung điểm của EF) nên HK = EI.

Xét tứ giác HKIE có HK = EI và HK // EI (do HK // EF) nên tứ giác HKIE là hình bình hành.

Lời giải

a) Do MA = MB = 3 nên M là trung điểm của AB;

NA = NC = 4,5 nên N là trung điểm của AC.

Xét ∆ABC có: M, N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của ∆ABC.

Suy ra MN=12BC=1210=5 (tính chất đường trung bình của tam giác).

Vậy x = 5.

b) Ta có HI ⊥ PN và MN ⊥ PN nên HI // MN.

Xét ∆MNP có: I là trung điểm của PN (PI = IN = 4) và HI // MN nên H là trung điểm của PM.

Do đó HM = HP = 5

Vậy y = 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP