Câu hỏi:

30/10/2023 3,340 Lưu

Cho hai tam giác ABC và DEF lần lượt có chu vi là 15 cm và 20 cm. Biết rằng \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{3}{4}\). Chứng minh rằng ∆ABC ∆DEF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3}{4} = \frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{AB + AC}}{{DE + DF}} = \frac{{15 - BC}}{{20 - FE}}\)

Do đó,

4(15 – BC) = 3(20 – FE)

60 – 4BC = 60 – 3FE

4BC = 3FE

Suy ra \(\frac{{BC}}{{FE}} = \frac{3}{4}\).

Tam giác ABC và tam giác DEF có:

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\left( { = \frac{3}{4}} \right)\).

Nên ∆ABC ∆DEF (c.c.c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Tam giác ABC có:

M, N lần lượt là trung điểm của BC, CA

Nên MN là đường trung bình của tam giác ABC.

Do đó, MN // AB và \(\frac{{AB}}{{MN}} = 2\).

Chứng minh tương tự ta có: \(\frac{{BC}}{{PN}} = 2\); \(\frac{{AC}}{{PM}} = 2\).

Tam giác ABC và tam giác MNP có:

\(\frac{{AB}}{{MN}} = \frac{{BC}}{{PN}} = \frac{{AC}}{{PM}}\) (= 2).

Nên ∆ABC ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.

Lời giải

Lời giải

Media VietJack

a)

Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),

\(\widehat {BAC}\) chung.

Do đó, ∆AMN ∆ACB (c.g.c).

b)

Vì ∆AMN ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));

\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).

Do đó, ∆AME ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).

Vậy \(\widehat {EAB} = \widehat {FAC}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP