Câu hỏi:
11/07/2024 2,814Cho tam giác ABC với AB = 6 cm, AC = 4 cm, BC = 5 cm. Trên tia đối của tia CA lấy điểm D sao cho CD = CB. Chứng minh rằng:
a) ∆ABC ᔕ ∆ADB.
b) \(\widehat {ACB} = 2\widehat {ABC}\).
Quảng cáo
Trả lời:
Lời giải
a)
Ta có: AD = AC + DC = AC + BC = 4 + 5 = 9 (cm).
Xét tam giác ABC và tam giác ADB có:
\(\widehat A\) chung
\(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\,\,\left( {\frac{6}{9} = \frac{4}{6}} \right)\).
Do đó, ∆ABC ᔕ ∆ADB (c.g.c).
b)
Vì ∆ABC ᔕ ∆ADB (cmt) nên \(\widehat {ABC} = \widehat {ADB}\).
Mà tam giác BCD cân tại C (do CD = CB) nên \(\widehat {CBD} = \widehat {BDC}\) hay \(\widehat {CBD} = \widehat {ADB}\).
Do đó, \(\widehat {CBD} = \widehat {ABC}\).
Vì góc ACB là góc ngoài tại đỉnh C của tam giác DBC nên ta có:
\(\widehat {ACB} = \widehat {CDB} + \widehat {CBD} = 2\widehat {CBD} = 2\widehat {ABC}\).
Vậy \(\widehat {ACB} = 2\widehat {ABC}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Tam giác ABC có:
M, N lần lượt là trung điểm của BC, CA
Nên MN là đường trung bình của tam giác ABC.
Do đó, MN // AB và \(\frac{{AB}}{{MN}} = 2\).
Chứng minh tương tự ta có: \(\frac{{BC}}{{PN}} = 2\); \(\frac{{AC}}{{PM}} = 2\).
Tam giác ABC và tam giác MNP có:
\(\frac{{AB}}{{MN}} = \frac{{BC}}{{PN}} = \frac{{AC}}{{PM}}\) (= 2).
Nên ∆ABC ᔕ ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.
Lời giải
Lời giải
a)
Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).
Tam giác AMN và tam giác ABC có:
\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),
\(\widehat {BAC}\) chung.
Do đó, ∆AMN ᔕ ∆ACB (c.g.c).
b)
Vì ∆AMN ᔕ ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).
Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.
Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).
Tam giác MAE và tam giác CAF có:
\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));
\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).
Do đó, ∆AME ᔕ ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).
Vậy \(\widehat {EAB} = \widehat {FAC}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận