Câu hỏi:
11/07/2024 1,052Cho tam giác ABC với AB = 6 cm, AC = 4 cm, BC = 5 cm. Trên tia đối của tia CA lấy điểm D sao cho CD = CB. Chứng minh rằng:
a) ∆ABC ᔕ ∆ADB.
b) \(\widehat {ACB} = 2\widehat {ABC}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a)
Ta có: AD = AC + DC = AC + BC = 4 + 5 = 9 (cm).
Xét tam giác ABC và tam giác ADB có:
\(\widehat A\) chung
\(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\,\,\left( {\frac{6}{9} = \frac{4}{6}} \right)\).
Do đó, ∆ABC ᔕ ∆ADB (c.g.c).
b)
Vì ∆ABC ᔕ ∆ADB (cmt) nên \(\widehat {ABC} = \widehat {ADB}\).
Mà tam giác BCD cân tại C (do CD = CB) nên \(\widehat {CBD} = \widehat {BDC}\) hay \(\widehat {CBD} = \widehat {ADB}\).
Do đó, \(\widehat {CBD} = \widehat {ABC}\).
Vì góc ACB là góc ngoài tại đỉnh C của tam giác DBC nên ta có:
\(\widehat {ACB} = \widehat {CDB} + \widehat {CBD} = 2\widehat {CBD} = 2\widehat {ABC}\).
Vậy \(\widehat {ACB} = 2\widehat {ABC}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.
a) Chứng minh rằng ∆AMN ᔕ ∆ACB.
b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).
Câu 3:
Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.
a) Chứng minh rằng: ∆EAB ᔕ ∆EDC, ∆FAB ᔕ ∆FCD.
b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.
Câu 4:
Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:
a) ∆MEN ᔕ ∆BFC.
b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).
Câu 5:
Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:
a) AM . AB = AN . AC.
b) OM . OC = ON . OB.
Câu 6:
Câu 7:
về câu hỏi!