Câu hỏi:
11/07/2024 1,063Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Vì tam giác MNP đồng dạng với tam giác ABC nên:
\(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}}\) (các cạnh tương ứng tỉ lệ).
Mà trong tam giác ABC, cạnh AC lớn nhất nên trong tam giác MNP cạnh lớn nhất là MP.
Do đó, MP = 9 cm.
Khi đó \(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}} = \frac{9}{6} = \frac{3}{2}\).
Suy ra: \(MN = \frac{3}{2}AB = \frac{3}{2}.4 = 6\) (cm), \(NP = \frac{3}{2}BC = \frac{3}{2} \cdot 5 = \frac{{15}}{2}\) (cm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.
a) Chứng minh rằng ∆AMN ᔕ ∆ACB.
b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).
Câu 3:
Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.
a) Chứng minh rằng: ∆EAB ᔕ ∆EDC, ∆FAB ᔕ ∆FCD.
b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.
Câu 4:
Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:
a) ∆MEN ᔕ ∆BFC.
b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).
Câu 5:
Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:
a) AM . AB = AN . AC.
b) OM . OC = ON . OB.
Câu 6:
Câu 7:
về câu hỏi!