Câu hỏi:
11/07/2024 371Với hai tam giác bất kì ABC và MNP thỏa mãn \(\widehat {ABC} = \widehat {NMP}\), \(\widehat {ACB} = \widehat {MNP}\). Những khẳng định nào sau đây là đúng ?
(1) ∆ABC ᔕ ∆MNP.
(2) ∆BCA ᔕ ∆MNP.
(3) ∆ABC ᔕ ∆NPM.
(4) ∆CAB ᔕ ∆NPM.
(5) ∆ABC ᔕ ∆PMN.
(6) ∆BAC ᔕ ∆MNP.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Tam giác ABC và tam giác MNP có:
\(\widehat {ABC} = \widehat {NMP}\)
\(\widehat {ACB} = \widehat {MNP}\)
Do đó, ∆ABC ᔕ ∆PMN (g.g).
Khi đó đỉnh A tương ứng với đỉnh P, đỉnh B tương ứng với đỉnh M, đỉnh C tương ứng với đỉnh N.
Suy ra, các khẳng định đúng là (2), (4), (5).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.
a) Chứng minh rằng ∆AMN ᔕ ∆ACB.
b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).
Câu 3:
Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.
a) Chứng minh rằng: ∆EAB ᔕ ∆EDC, ∆FAB ᔕ ∆FCD.
b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.
Câu 4:
Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:
a) ∆MEN ᔕ ∆BFC.
b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).
Câu 5:
Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:
a) AM . AB = AN . AC.
b) OM . OC = ON . OB.
Câu 6:
Câu 7:
về câu hỏi!