Câu hỏi:

30/10/2023 2,782 Lưu

Cho tam giác ABC và điểm O nằm trong tam giác. Lấy M, N, P là các điểm lần lượt trên các tia OA, OB, OC sao cho OA = 3OM, OB = 3ON, OC = 3OP. Chứng minh rằng ∆ABC ∆MNP và tìm tỉ số đồng dạng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Vì OA = 3OM, OB = 3ON, OC = 3OP.

Nên \(\frac{{OA}}{{OM}} = 3;\frac{{OB}}{{ON}} = 3;\frac{{OC}}{{OP}} = 3\). Suy ra \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{{OC}}{{OP}} = 3\).

Tam giác OMN có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}}\).

Nên suy ra AB song song với MN (định lí Thalès đảo).

Do đó, \(\frac{{AB}}{{MN}} = \frac{{OA}}{{OM}} = 3\).

Chứng minh tương tự ta có: \(\frac{{AC}}{{MP}} = 3;\frac{{BC}}{{NP}} = 3\).

Tam giác ABC và tam giác MNP có:

\(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}} = \frac{{BC}}{{NP}} = 3\).

Do đó, ∆ABC ∆MNP (c.c.c) với tỉ số đồng dạng 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Tam giác ABC có:

M, N lần lượt là trung điểm của BC, CA

Nên MN là đường trung bình của tam giác ABC.

Do đó, MN // AB và \(\frac{{AB}}{{MN}} = 2\).

Chứng minh tương tự ta có: \(\frac{{BC}}{{PN}} = 2\); \(\frac{{AC}}{{PM}} = 2\).

Tam giác ABC và tam giác MNP có:

\(\frac{{AB}}{{MN}} = \frac{{BC}}{{PN}} = \frac{{AC}}{{PM}}\) (= 2).

Nên ∆ABC ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.

Lời giải

Lời giải

Media VietJack

a)

Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),

\(\widehat {BAC}\) chung.

Do đó, ∆AMN ∆ACB (c.g.c).

b)

Vì ∆AMN ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));

\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).

Do đó, ∆AME ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).

Vậy \(\widehat {EAB} = \widehat {FAC}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP