Câu hỏi:

27/07/2023 6,272

Cho hình thang cân ABCD với hai đáy AB và CD, đường chéo AC vuông góc với cạnh bên AD, tia CA là tia phân giác của góc C.

Tính chu vi của hình thang đó biết rằng AD = 2 cm.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Do CA là tia phân giác của  C^ nên  BCA^=ACD^

Mà ABCD là hình thang cân nên AB // CD, suy ra  BAC^=ACD^ (hai góc so le trong)

Do đó,  BAC^=BCA^, suy ra ∆ABC cân tại B.

Đặt  BAC^=α thì  C^=2α.

Vì ABCD là hình thang cân nên  D^=C^=2α.

Tam giác ADC vuông tại A nên  ADC^+ACD^=2α+α=90°, suy ra  α=30°, D^=60°.

Lấy điểm M thuộc cạnh huyền DC sao cho DM = AD, mà  D^=60° thì AMD là tam giác đều, nên  MAD^=60°

Khi đó  MAC^=CAD^MAD^=90°60°=30°

Suy ra  ACM^=CAM^=30° nên tam giác MAC cân tại M

Do đó AM = MC, mà AM = DM = AD

Nên AM = DM = AD = MC hay DC = 2AD.

Vy AB = BC = AD, DC = 2AD nên chu vi hình thang bằng

AB + BC + CD + AD = 5AD = 5.2 = 10 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các góc của hình thang ABCD (AB, CD là hai đáy) biết  A^=2D^,  B^=C^+40°.

Xem đáp án » 27/07/2023 6,371

Câu 2:

Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.

Xem đáp án » 27/07/2023 3,156

Câu 3:

Cho tam giác ABC vuông cân tại đỉnh A. Ghép thêm vào phía ngoài tam giác đó tam giác BCD vuông cân tại đỉnh B.

Chứng minh tứ giác ABDC là một hình thang vuông (hình thang có một cạnh bên vuông góc với hai đáy).

Xem đáp án » 27/07/2023 3,031

Câu 4:

Chứng minh rằng trong hình thang có nhiều nhất hai góc tù.

Xem đáp án » 27/07/2023 672

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store