Câu hỏi:
27/07/2023 6,272Cho hình thang cân ABCD với hai đáy AB và CD, đường chéo AC vuông góc với cạnh bên AD, tia CA là tia phân giác của góc C.
Tính chu vi của hình thang đó biết rằng AD = 2 cm.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do CA là tia phân giác của nên
Mà ABCD là hình thang cân nên AB // CD, suy ra (hai góc so le trong)
Do đó, , suy ra ∆ABC cân tại B.
Đặt thì .
Vì ABCD là hình thang cân nên
Tam giác ADC vuông tại A nên suy ra
Lấy điểm M thuộc cạnh huyền DC sao cho DM = AD, mà thì AMD là tam giác đều, nên
Khi đó
Suy ra nên tam giác MAC cân tại M
Do đó AM = MC, mà AM = DM = AD
Nên AM = DM = AD = MC hay DC = 2AD.
Vậy AB = BC = AD, DC = 2AD nên chu vi hình thang bằng
AB + BC + CD + AD = 5AD = 5.2 = 10 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.
Câu 3:
Cho tam giác ABC vuông cân tại đỉnh A. Ghép thêm vào phía ngoài tam giác đó tam giác BCD vuông cân tại đỉnh B.
Chứng minh tứ giác ABDC là một hình thang vuông (hình thang có một cạnh bên vuông góc với hai đáy).
về câu hỏi!