Câu hỏi:
13/07/2024 5,702Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).

a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.
Câu hỏi trong đề: Giải SGK Toán 8 KNTT Bài 12. Hình bình hành có đáp án !!
Quảng cáo
Trả lời:
a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.
Vì DE là tia phân giác của nên .
Mà (BE // DF, hai góc so le trong) nên .
Suy ra tam giác ADE cân tại A.
Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.
Vì ABCD là hình bình hành nên AD = BC; .
Vì AE là tia phân giác ; BF là tia phân giác nên
mà .
Do đó .
Xét ∆ADE và ∆CBF có:
(chứng minh trên);
AD = BC (chứng minh trên);
(chứng minh trên).
Do đó ∆ADE = ∆CBF (g.c.g).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì ABCD là hình bình hành nên AB = CD, AB // CD.
Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE, CF = DF.
Do đó AE = BE = CF = DF.
Xét tứ giác BEDF có:
BE = DF (chứng minh trên);
BE // DF (vì AB // CD)
Do đó tứ giác BEDF là hình bình hành.
Suy ra BF = DE (đpcm).
Lời giải

Vì ABCD là hình bình hành nên ta có:
• Hai đường chéo AC và BD cắt nhau tại O nên OA = OC, OB = OD.
• AB // CD nên AM // CN suy ra (hai góc so le trong).
Xét ∆OAM và ∆OCN có:
(chứng minh trên)
OA = OC (chứng minh trên)
(hai góc đối đỉnh)
Do đó ∆OAM = ∆OCN (g.c.g).
Suy ra AM = CN (hai cạnh tương ứng)
Mặt khác, AB = CD (chứng minh trên); AB = AM + BM; CD = CN + DN.
Suy ra BM = DN.
Xét tứ giác MBND có:
• BM // DN (vì AB // CD)
• BM = DN (chứng minh trên)
Do đó, tứ giác MBND là hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.