Câu hỏi:

13/07/2024 5,230

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của  (ảnh 1)

a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của  (ảnh 2)

a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.

Vì DE là tia phân giác của ADC^ nên D^1=D^2.

D^1=E^1 (BE // DF, hai góc so le trong) nên D^2=E^1.

Suy ra tam giác ADE cân tại A.

Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.

Vì ABCD là hình bình hành nên AD = BC; A^=C^;  ADC^=ABC^.

Vì AE là tia phân giác ADC^; BF là tia phân giác ABC^ nên

B^1=B^2;  D^1=D^2 ADC^=ABC^.

Do đó B^1=B^2=D^1=D^2.

Xét ∆ADE và ∆CBF có:

A^=C^ (chứng minh trên);

AD = BC (chứng minh trên);

B^2=D^2 (chứng minh trên).

Do đó ∆ADE = ∆CBF (g.c.g).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. Chứng minh BF = DE.

Xem đáp án » 13/07/2024 32,715

Câu 2:

Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.

Xem đáp án » 13/07/2024 27,687

Câu 3:

Tròn khẳng định: Hình thang cân có hai cạnh bên bằng nhau. Ngược lại, hình thang có hai cạnh bên bằng nhau thì nó là hình thang cân.

Vuông lại cho rằng: Tròn sai rồi!

Có trường hợp hình thang có hai cạnh bên bằng nhau nhưng nó lại là hình bình hành mà không phải là hình thang cân.

Theo em, bạn nào đúng? Vì sao?

Xem đáp án » 13/07/2024 24,028

Câu 4:

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35.

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35. (ảnh 1)

Xem đáp án » 13/07/2024 15,659

Câu 5:

Cho tam giác ABC. Từ một điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song với AB, cắt cạnh AC tại N và kẻ đường thẳng song song với AC, cắt AB tại P. Gọi I là trung điểm của đoạn NP. Chứng minh rằng I cũng là trung điểm của đoạn thẳng AM.

Xem đáp án » 13/07/2024 14,364

Câu 6:

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao? (ảnh 1)

Xem đáp án » 13/07/2024 13,390

Câu 7:

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

a) Hình thang có hai cạnh bên song song là hình bình hành.

Xem đáp án » 13/07/2024 6,264

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store