Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Câu hỏi trong đề: Giải SGK Toán 8 KNTT Bài 13. Hình chữ nhật có đáp án !!
Quảng cáo
Trả lời:

Theo đề bài, M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN.
Nên tứ giác ANCH có hai đường chéo AC và HN cắt nhau tại trung điểm M của mỗi đường.
Suy ra tứ giác ANCH là hình bình hành.
Hình bình hành ANCH có nên tứ giác ANCH là hình chữ nhật.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Tứ giác MPAN có:
Suy ra .
Tứ giác MPAN có: .
Do đó tứ giác MPAN là hình chữ nhật.
Lời giải
Ta đặt hình chữ nhật ABCD như hình vẽ.

Vì ABCD là hình chữ nhật .
Ta có: AB ⊥ AD; AB ⊥ BC suy ra AD // BC.
AB ⊥ AD; CD ⊥ AD suy ra AB // CD.
• Vì ABCD là hình chữ nhật nên AD // BC; AB // CD
Suy ra ABCD cũng là hình bình hành.
• Vì ABCD là hình chữ nhật nên AB // CD suy ra ABCD cũng là hình thang.
Hình thang ABCD có .
Do đó ABCD cũng là hình thang cân.
Vì ABCD vừa là hình bình hành vừa là hình thang cân nên có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Mingj Hoang
Cho Tam giác ABC có AH là đường cao. M là trung điểm AC. N đối xứng với H qua M, chứng minh: N M là truy đưa cản để gồ a. Tứ giác AHCN là hình chữ nhật. ANDO WH b. ANCB là hình thang vuông. c. ABHN là hình thang.