Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Câu hỏi trong đề: Giải SGK Toán 8 KNTT Bài 13. Hình chữ nhật có đáp án !!
Quảng cáo
Trả lời:

Theo đề bài, M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN.
Nên tứ giác ANCH có hai đường chéo AC và HN cắt nhau tại trung điểm M của mỗi đường.
Suy ra tứ giác ANCH là hình bình hành.
Hình bình hành ANCH có nên tứ giác ANCH là hình chữ nhật.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Tứ giác MPAN có:
Suy ra .
Tứ giác MPAN có: .
Do đó tứ giác MPAN là hình chữ nhật.
Lời giải
Ta kiểm tra xem các cặp đối của tứ giác:
• Nếu các cặp cạnh đối không bằng nhau thì tứ giác đó không là hình bình hành nên cũng không là hình chữ nhật.
• Nếu các cặp cạnh đối bằng nhau thì tứ giác đó là hình bình hành.
Sau đó ta kiểm tra xem hai đường chéo của tứ giác (là hình bình hành) đó.
• Nếu hai đường chéo của hình bình hành đó bằng nhau thì tứ giác đó là hình chữ nhật.
• Nếu hai đường chéo của hình bình hành đó không bằng nhau thì tứ giác đó không là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Mingj Hoang
Cho Tam giác ABC có AH là đường cao. M là trung điểm AC. N đối xứng với H qua M, chứng minh: N M là truy đưa cản để gồ a. Tứ giác AHCN là hình chữ nhật. ANDO WH b. ANCB là hình thang vuông. c. ABHN là hình thang.