Quảng cáo
Trả lời:

• Hình 3.51a)

Tứ giác đã cho có hai đường chéo cắt nhau tại trung điểm của mỗi đường và chúng vuông góc với nhau nên tứ giác đó là hình thoi.
• Gọi tứ giác trong Hình 3.51b) là tứ giác ABCD.
Vì mà hai góc này ở vị trí so le trong nên AB // CD.
Mà AB = CD nên tứ giác ABCD là hình bình hành.
Mặt khác, hay DB là tia phân giác của .
Khi đó, hình bình hành ABCD có DB là tia phân giác của .
Do đó tứ giác ABCD là hình thoi.
• Tứ giác trong Hình 3.51c) hai đường chéo vuông góc với nhau và có đường chéo là đường vuông góc của một góc của tứ giác.
Từ đó ta suy ra tứ giác đã cho không phải là hình thoi.
Vậy Hình 3.51a và Hình 3.51b là hình thoi.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình thoi có bốn cạnh bằng nhau nên ta suy ra hai cặp cạnh đối bằng nhau.
Ta suy ra tính chất hình thoi dựa vào tính chất của hình bình hành như sau:
- Hình thoi có hai góc đối bằng nhau.
- Hình thoi có các cặp cạnh đối song song.
- Hình thoi có hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Lời giải

Gọi I là trung điểm của AD.
Khi đó, mà M là trung điểm của BC nên MI = AB.
Suy ra nên AD = 2AB.
Mà (cm).
Suy ra AB + 2AB = 18
Hay 3AB = 18
Do đó AB = 6 (cm).
Suy ra AD = 2AB = 2 . 6 = 12 (cm).
Vậy độ dài các cạnh của hình chữ nhật ABCD là AB = CD = 6 cm; AD = BC = 12 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.