Câu hỏi:

13/07/2024 1,175 Lưu

Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).

Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC (ảnh 1)

• So sánh các tỉ số AB'AB AC'AC.

• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.

• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Ta có AB'AB=46=23; AC'AC=69=23.

Do đó AB'AB=AC'AC.

• Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên B’C’’ // BC.

Áp dụng định lí Thalès vào ∆ABC, ta có:

AB'AB=AC''AC hay 46=AC''9.

Suy ra AC''=4  .  96=6 (cm).

Vậy AC’’ = 6 cm.

• Trên cạnh AC lấy điểm C’ sao cho AC’ = 6 cm.

Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên điểm C’’ nằm trên cạnh AC sao cho AC’’ = 6 cm.

Do đó, hai điểm C’, C’’ trùng nhau.

Vì hai điểm C’, C’’ trùng nhau mà B’C’’ // BC nên B’C’ // BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề bài, ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF, áp dụng định lí Thalès, ta có:

ECBE=CFAF hay 30BE=2040.

Suy ra BE=30  .  4020=60 (m).

Vậy khoảng cách giữa hai vị trí B và E bằng 60 m.

Lời giải

Cho tam giác ABC có trọng tâm G. Vẽ đường thẳng d qua G và song song với AB, d cắt BC tại điểm M (ảnh 1)

Lấy D là trung điểm của cạnh BC.

Khi đó, AD là đường trung tuyến của tam giác ABC.

Vì G là trọng tâm của tam giác ABC nên điểm G nằm trên cạnh AD.

Ta có AGAD=23 hay AG=23AD.

Vì MG // AB, theo định lí Thalès, ta suy ra: AGAD=BMBD=23.

Ta có BD = CD (vì D là trung điểm của cạnh BC) nên BMBC=BM2BD=22  .  3=13.

Do đó BM=13BC (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP