Câu hỏi:

11/07/2024 4,272

Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?   

Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?	   (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Hình 19a):

Ta có A^1=C^1 và hai góc này ở vị trí so le trong nên AB // CD.

Để tứ giác ABCD là hình bình hành thì có hai trường hợp sau:

+) Trường hợp 1: Tứ giác ABCD có hai cặp cạnh đối song song. Do đó cần thêm điều kiện AD // BC.

+) Trường hợp 2: Tứ giác ABCD có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện AB = CD.

• Hình 19b): Tứ giác EFGH đã có một cặp cạnh đối bằng nhau (EH = GF).

Để tứ giác EFGH là hình bình hành thì có hai trường hợp sau:

+) Trường hợp 1: Tứ giác EFGH có hai cặp cạnh đối bằng nhau. Do đó cần thêm điều kiện EF = GH.

+) Trường hợp 2: Tứ giác EFGH có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện EH // GF.

• Hình 19c):

Ta có OQ = ON nên O là trung điểm của NQ.

Để tứ giác MNPQ là hình bình hành thì tứ giác MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường. Do đó cần thêm điều kiện O là trung điểm của MP.

• Hình 19d): Tứ giác STUV đã có một cặp góc đối bằng nhau S^=U^.

Để tứ giác STUV là hình bình hành thì tứ giác STUV có cac cặp góc đối bằng nhau. Do đó cần thêm điều kiện T^=V^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.

a) Chứng minh tứ giác ABDC là hình thoi.

Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.  a) Chứng minh tứ giác ABDC là hình thoi.  (ảnh 1)

Xem đáp án » 12/07/2024 9,525

Câu 2:

Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.

Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD. (ảnh 1)

Xem đáp án » 12/07/2024 7,982

Câu 3:

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.

a) Chứng minh rằng tứ giác EBFD là hình bình hành.

Xem đáp án » 12/07/2024 6,686

Câu 4:

Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.

a) Chứng minh tứ giác AEFI là hình thang.

Xem đáp án » 11/07/2024 6,035

Câu 5:

Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu biết hai đường chéo vuông góc tại trung điểm của mỗi đường.

Xem đáp án » 12/07/2024 5,036

Câu 6:

Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.

Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.  (ảnh 1)

Xem đáp án » 12/07/2024 5,035

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store