Câu hỏi:

12/07/2024 6,907

Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.

Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có AE = EB nên AB = 2AE.

         DG = GC nên DC = 2DG.

Mà AE = DG nên AB = DC.

Chứng minh tương tự ta cũng có: AD = BC.

Tứ giác ABCD có AB = DC và AD = BC nên là hình bình hành (dấu hiệu nhận biết).

Suy ra AB // CD và AD // BC.

Lại có AD AB nên AD CD; AB BC; BC CD.

Xét DAEH và DBEF có:

EAH^=EBF^=90°; AE = BE; AH = BF.

Do đó DAEH = DBEF (hai cạnh góc vuông).

Suy ra HE = FE (hai cạnh tương ứng).

Chứng minh tương tự ta cũng có: HE = HG; HE = FG.

Do đó HE = EF = FG = GH.

Tứ giác EFGH có HE = EF = FG = GH nên là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có D đối xứng với A qua BC nên M là trung điểm của AD và AD BC.

Tứ giác ABDC có hai đường chéo AD và BD cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Lại có hai đường chéo AD BC nên hình bình hành ABDC là hình thoi.

Lời giải

Media VietJack
Do ABCD là hình thoi nên hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường.

Do đó OA=12AC=3cm OB=12BD=4cm.

Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:

AB2 = OA2 + OB2

Suy ra AB=OA2+OB2=32+42=5cm.

Vậy độ dài cạnh của hình thoi ABCD là 5 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP