Câu hỏi:

12/07/2024 528

Cho hình chữ nhật ABCD. Giải thích tại sao ABCD là hình vuông trong mỗi trường hợp sau:

Trường hợp 1: AB = BC.

Trường hợp 2: AC vuông góc với BD.

Trường hợp 3: AC là đường phân giác của góc BAD.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trường hợp 1: AB = BC.

Cho hình chữ nhật ABCD. Giải thích tại sao ABCD là hình vuông trong mỗi trường hợp sau:  Trường hợp 1: AB = BC. (ảnh 1)

Do ABCD là hình chữ nhật nên cũng là hình bình hành.

Lại có hai cạnh kề bằng nhau AB = BC nên hình bình hành ABCD là hình thoi.

ABCD vừa là hình chữ nhật vừa là hình thoi nên là hình vuông.

• Trường hợp 2: AC vuông góc với BD.

Cho hình chữ nhật ABCD. Giải thích tại sao ABCD là hình vuông trong mỗi trường hợp sau:  Trường hợp 1: AB = BC. (ảnh 2)

Do ABCD là hình chữ nhật nên cũng là hình bình hành.

Lại có hai đường chéo vuông góc nên hình bình hành ABCD là hình thoi.

ABCD vừa là hình chữ nhật vừa là hình thoi nên là hình vuông.

• Trường hợp 3: AC là đường phân giác của góc BAD.

Cho hình chữ nhật ABCD. Giải thích tại sao ABCD là hình vuông trong mỗi trường hợp sau:  Trường hợp 1: AB = BC. (ảnh 3)

Do ABCD là hình chữ nhật nên cũng là hình bình hành.

Lại có đường chéo AC là đường phân giác của góc BAD nên hình bình hành ABCD là hình thoi.

ABCD vừa là hình chữ nhật vừa là hình thoi nên là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A (AB < AC). Gọi D là trung điểm của BC. Vẽ DE // AB, vẽ DF // AC (E AC, F AB). Chứng minh rằng:

a) Tứ giác AEDF là hình chữ nhật.

Cho tam giác ABC vuông tại A (AB < AC). Gọi D là trung điểm của BC. Vẽ DE // AB, vẽ DF // AC (E ∈ AC, F ∈ AB). Chứng minh rằng: (ảnh 1)

Xem đáp án » 12/07/2024 3,829

Câu 2:

Cho tam giác ABC có đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.

a) Chứng minh tứ giác AHCE là hình chữ nhật.

Xem đáp án » 12/07/2024 3,130

Câu 3:

Cho Hình 15. Vẽ thêm điểm P để tứ giác MNPQ là hình chữ nhật.

Cho Hình 15. Vẽ thêm điểm P để tứ giác MNPQ là hình chữ nhật. (ảnh 1)

Xem đáp án » 12/07/2024 2,455

Câu 4:

Cho Hình 14. Tìm x.

Cho Hình 14. Tìm x.  (ảnh 1)

Xem đáp án » 31/03/2023 1,707

Câu 5:

Tìm hình vuông trong hai hình sau:

Tìm hình vuông trong hai hình sau:  (ảnh 1)

Xem đáp án » 12/07/2024 1,439

Câu 6:

Cho ABCD là hình chữ nhật.

a) Chứng minh AB // CD và AD // BC.

Xem đáp án » 12/07/2024 1,327

Câu 7:

Lấy một tờ giấy, gấp làm tư để có một góc vuông như trong Hình 16, dùng kéo cắt theo đường MN sao cho OM = ON. Mở phần giấy cắt được ra ta được một tứ giác.

Tứ giác đó là hình gì? Giải thích kết luận của em.

Lấy một tờ giấy, gấp làm tư để có một góc vuông như trong Hình 16, dùng kéo cắt theo đường MN sao cho OM = ON. Mở phần giấy cắt được ra  (ảnh 1)

Xem đáp án » 31/03/2023 1,266

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn