Câu hỏi:

12/07/2024 13,138 Lưu

Trong các khẳng định sau, khẳng định nào đúng?

A. Hình chữ nhật có hai đường chéo bằng nhau là hình vuông.

B. Hình thoi có hai đường chéo vuông góc là hình vuông.

C. Hình thoi có một góc vuông là hình vuông.

D. Hình chữ nhật có một góc vuông là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Theo tính chất của hình chữ nhật: Hình chữ nhật có hai đường chéo bằng nhau và có bốn góc vuông. Do đó đây là các tính chất đã có sẵn của hình chữ nhật nên A và D là khẳng định sai.

Theo tính chất của hình thoi: Hình thoi có hai đường chéo vuông góc với nhau. Do đó đây là tính chất đã có sẵn của hình thoi nên B là khẳng định sai.

Hình thoi có một góc vuông là hình vuông. Đây là khẳng định đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho tam giác ABC cân tại A. Gọi H, D lần lượt là trung điểm của các cạnh BC và AB.  a) Chứng minh rằng tứ giác ADHC là hình thang. (ảnh 1)

• Do DABC cân tại A nên ABC^=ACB^ và AB = AC.

Vì AB = AC nên A nằm trên đường trung trực của BC.

Vì H là trung điểm của BC nên H nằm trên đường trung trực của BC.

Do đó AH là đường trung trực của BC nên AH BC.

• Xét DAHB vuông tại H có HD là đường trung tuyến ứng với cạnh huyền AB nên bằng nửa cạnh huyền AB.

Do đó HD=DB=DA=12AB.

• Tam giác DBH có DB = DH nên là tam giác cân tại D

Suy ra DBH^=DHB^ hay ABC^=DHB^.

Lại có ABC^=ACB^ (chứng minh trên) nên DHB^=ACB^

Mà hai góc này ở vị trí đồng vị nên DH // AC.

• Xét tứ giác ADHC có DH // AC nên là hình thang.

Lời giải

a) • Ta có: AE = EF = FC nên AE=EF=FC=13AC   (1)

Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành.

Khi đó O là trung điểm của AC và BD.

Suy ra AO=CO=12AC   (2)

Từ (1) và (2) suy ra CFCO=13AC12AC=23 hay CF=23CO.

• Xét DBCD có CO là trung tuyến của tam giác và CF=23CO nên F là trọng tâm của DBCD.

Do đó BF hay BM cũng là đường trung tuyến của DBCD.

Suy ra M là trung điểm của CD.

• Chứng minh tương tự đối với DABD ta có E là trọng tâm của tam giác.

Do đó DE hay DN cũng là đường trung tuyến của DABD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP