Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
753 lượt thi 23 câu hỏi
1212 lượt thi
Thi ngay
259 lượt thi
699 lượt thi
261 lượt thi
1034 lượt thi
236 lượt thi
728 lượt thi
315 lượt thi
415 lượt thi
328 lượt thi
Câu 1:
Bạn Nam dùng 6 đoạn tre vót thẳng để làm khung diều hình thoi. Trong đó có 2 đoạn tre dài 60 cm và 80 cm để làm hai đường chéo của cái diều, 4 đoạn tre còn lại là 4 cạnh của cái diều. Khi đó tổng độ dài 4 đoạn tre dùng làm cạnh của cái diều hình thoi là
A. 5 m.
B. 1 m.
C. 1,5 m.
D. 2 m.
Cho hình thang cân ABCD (AB // CD) có A^=65°. Số đo góc C là
A. 115°.
B. 95°.
C. 65°.
D. 125°.
Câu 2:
Trong các khẳng định sau, khẳng định nào sai?
A. Tứ giác có ba góc vuông là hình chữ nhật.
B. Hình bình hành có một góc vuông là hình chữ nhật.
C. Hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình chữ nhật.
D. Tứ giác có các cạnh đối bằng nhau là hình bình hành.
Câu 3:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB = 8 cm; AC = 15 cm. Độ dài đoạn AM là
A. 8,5 cm.
B. 8 cm.
C. 7 cm.
D. 7,5 cm.
Câu 4:
Cho hình thoi ABCD có cạnh bằng 13 cm, độ dài đường chéo AC là 10 cm. Độ dài đường chéo BD là
A. 24 cm.
B. 12 cm.
C. 16 cm.
D. 20 cm.
Câu 5:
Trong các khẳng định sau, khẳng định nào đúng?
A. Hình chữ nhật có hai đường chéo bằng nhau là hình vuông.
B. Hình thoi có hai đường chéo vuông góc là hình vuông.
C. Hình thoi có một góc vuông là hình vuông.
D. Hình chữ nhật có một góc vuông là hình vuông.
Câu 6:
Cho tứ giác ABCD, biết A^=60°,B^=110°,D^=70°. Khi đó số đo góc C là
B. 110°.
C. 130°.
D. 80°.
Câu 7:
Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm của BF và CD, N là giao điểm của DE và AB. Chứng minh rằng:
a) M, N theo thứ tự là trung điểm của CD, AB;
Câu 8:
Câu 9:
Cho tam giác ABC cân tại A. Gọi H, D lần lượt là trung điểm của các cạnh BC và AB.
a) Chứng minh rằng tứ giác ADHC là hình thang.
Câu 10:
b) Gọi E là điểm đối xứng với H qua D. Chứng minh rằng tứ giác AHBE là hình chữ nhật.
Câu 11:
c) Tia CD cắt AH tại M và cắt BE tại N. Chứng minh rằng tứ giác AMBN là hình bình hành.
Câu 12:
Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh rằng tứ giác ANEB là hình thang vuông.
Câu 13:
b) Chứng minh rằng tứ giác ANEM là hình chữ nhật.
Câu 14:
c) Qua M kẻ đường thẳng song song với BN cắt tia EN tại F. Chứng minh rằng tứ giác AFCE là hình thoi.
Câu 15:
d) Gọi D là điểm đối xứng của E qua M. Chứng minh rằng A là trung điểm của DF.
Câu 16:
Cho hình bình hành ABCD có AB = 2AD. Gọi E và F lần lượt là trung điểm của AB và CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE.
a) Chứng minh rằng tứ giác AECF là hình bình hành.
Câu 17:
b) Tứ giác AEFD là hình gì? Vì sao?
Câu 18:
c) Chứng minh rằng tứ giác EIFK là hình chữ nhật.
Câu 19:
d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Câu 20:
Cho hình bình hành ABCD có AD = 2AB. Từ C vẽ CE vuông góc với AB tại E. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE tại F, MF cắt BC tại N.
Câu 21:
b) Chứng minh tam giác EMC cân tại M.
Câu 22:
c) Chứng minh rằng BAD^=2AEM^.
151 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com