Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) • Do M là trung điểm của CD (câu a) nên MC=MD=12CD.

            N là trung điểm của AB (câu a) nên NB=NA=12AB.

Mà AB = CD và AB // CD (do ABCD là hình bình hành)

Suy ra NB = MD và NB // MD.

Xét tứ giác BMDN có NB = MD và NB // MD

Do đó BMDN là hình bình hành.

Suy ra BM // DN và BM = DN.

• Ta có E là trọng tâm của DABD nênEN=13DN.

          F là trọng tâm của DBCD nên FM=13BM.

Mà DN = BM (chứng minh trên) nên EN = FM.

• Xét tứ giác EMFN có EN = FM và EN // FM (do BM // DN)

Suy ra EMFN là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho tam giác ABC cân tại A. Gọi H, D lần lượt là trung điểm của các cạnh BC và AB.  a) Chứng minh rằng tứ giác ADHC là hình thang. (ảnh 1)

• Do DABC cân tại A nên ABC^=ACB^ và AB = AC.

Vì AB = AC nên A nằm trên đường trung trực của BC.

Vì H là trung điểm của BC nên H nằm trên đường trung trực của BC.

Do đó AH là đường trung trực của BC nên AH BC.

• Xét DAHB vuông tại H có HD là đường trung tuyến ứng với cạnh huyền AB nên bằng nửa cạnh huyền AB.

Do đó HD=DB=DA=12AB.

• Tam giác DBH có DB = DH nên là tam giác cân tại D

Suy ra DBH^=DHB^ hay ABC^=DHB^.

Lại có ABC^=ACB^ (chứng minh trên) nên DHB^=ACB^

Mà hai góc này ở vị trí đồng vị nên DH // AC.

• Xét tứ giác ADHC có DH // AC nên là hình thang.

Lời giải

a) • Ta có: AE = EF = FC nên AE=EF=FC=13AC   (1)

Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành.

Khi đó O là trung điểm của AC và BD.

Suy ra AO=CO=12AC   (2)

Từ (1) và (2) suy ra CFCO=13AC12AC=23 hay CF=23CO.

• Xét DBCD có CO là trung tuyến của tam giác và CF=23CO nên F là trọng tâm của DBCD.

Do đó BF hay BM cũng là đường trung tuyến của DBCD.

Suy ra M là trung điểm của CD.

• Chứng minh tương tự đối với DABD ta có E là trọng tâm của tam giác.

Do đó DE hay DN cũng là đường trung tuyến của DABD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP