Cho tam giác nhọn ABC. Đường tròn đường kính BC cắt AB tại N, AC tại M. Gọi H là giao điểm của CN và BM. Khi đó A, N, H, M cùng nằm trên đường tròn nào?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Ta có: ∆BNC vuông tại N và ∆BMC vuông tại M. (do đường tròn đường kính BC đi qua M, N).
Xét ∆ANH và ∆AMH lần lượt vuông tại N, M.
Với E là trung điểm AH mà AH là cạnh huyền của cả hai tam giác ∆ANH và ∆AMH nên đường tròn tâm (E, EA) sẽ đi qua M, N, H.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Hàm số y = ln(x2 – 2mx + m) có tập xác định D = ℝ khi và chỉ khi
x2 – 2mx + 4 > 0 với mọi x ∈ ℝ.
\( \Rightarrow \left\{ \begin{array}{l}\Delta ' < 0\forall x\\1 > 0\end{array} \right.\)
\( \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2\)
Vậy \( - 2 < m < 2\) thỏa mãn yêu cầu bài toán.
Lời giải
Lời giải
Đáp án đúng là A.

Ta có: \(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} = \frac{{CA}}{{\sin B}}\)
\( \Rightarrow \left\{ \begin{array}{l}BC = \frac{{\sin A}}{{\sin C}}\,.\,AB\\CA = \frac{{\sin B}}{{\sin C}}\,.\,AB\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}BC = 2.6 = 12\\CA = \frac{4}{3}.6 = 8\end{array} \right.\).
Vậy chu vi tam giác ABC là: AB + BC +CA = 6 + 12 + 8 = 26.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.