Câu hỏi:
12/07/2024 1,833Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn. Kẻ đường kính CD. Tia phân giác của góc BOD cắt AB tại E.
a) Chứng minh rằng ED là tiếp tuyến của đường tròn (O).
b) Chứng minh AC + DE ≥ 2R.
c) Tính số đo góc AOE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆OBE và ∆ODE có:
OE là cạnh chung
\(\widehat {BOE} = \widehat {DOE}\) (giả thiết)
OB = OD (bán kính).
Do đó ∆OBE = ∆ODE (c.g.c).
Suy ra \(\widehat {OBE} = \widehat {ODE}\) (hai góc tương ứng).
Ta có \(\widehat {OBE} = 90^\circ \) (tính chất của tiếp tuyến) nên \(\widehat {ODE} = 90^\circ \).
Đường thẳng ED đi qua điểm D của đường tròn (O) và ED ⊥ OD nên ED là tiếp tuyến của đường tròn (O).
b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: AC = AB, DE = BE nên
AC + DE = AB + BE = AE (1)
Từ câu a) ta có CD ⊥ DE.
Mà CD ⊥ AC (giả thiết) nên ED // AC.
Ta có CD là khoảng cách giữa hai đường thẳng song song AC và DE
Do đó AE ≥ CD = 2R (2)
Từ (1) và (2) suy ra AC + DE ≥ 2R.
c) Theo tính chất của hai tiếp tuyến cắt nhau, ta có:
OA là tia phân giác của \(\widehat {BOC}\), OE là tia phân giác của \(\widehat {BOD}\).
Mà \(\widehat {BOC},\,\,\widehat {BOD}\) là hai góc kề bù nên \(\widehat {AOE} = \widehat {BOC} + \widehat {BOD} = 90^\circ \).
Vậy \(\widehat {AOE} = 90^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Câu 5:
Cho 6 điểm phân biệt A, B, C, D, E, F chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AC} + \overrightarrow {DB} \).
b) \(\overrightarrow {AD} - \overrightarrow {EB} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \).
Câu 6:
Câu 7:
Tìm ƯCLN và tập hợp ước chung của các số sau:
a) 10; 20; 70;
b) 5661; 5291; 4292.
về câu hỏi!