Câu hỏi:
01/04/2023 184Cho phương trình (m + 1)x2 + 2mx + m – 1 = 0 (*).
Tìm m để phương trình có hai nghiệm x1, x2 sao cho x12 + x22 = 5.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Để phương trình có hai nghiệm phân biệt ta có:
\(\left\{ \begin{array}{l}\Delta ' > 0\\a \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - (m + 1)(m - 1) > 0\\m \ne - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {m^2} + 1 > 0\\m \ne - 1\end{array} \right. \Leftrightarrow m \ne - 1\).
Áp dụng định lý Vi−ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 2m}}{{m + 1}}\\{x_1}.{x_2} = \frac{{m - 1}}{{m + 1}}\end{array} \right.\)
Khi đó, ta có: x12 + x22 = 5 ⇔ (x1 + x2)2 – 2x1x2 = 5
\( \Leftrightarrow {\left( {\frac{{ - 2m}}{{m + 1}}} \right)^2} - 2\frac{{m - 1}}{{m + 1}} = 5\)
⇔ 4m2 – 2(m – 1)(m + 1) = 5(m + 1)2
⇔ 4m2 – 2m2 + 2 = 5m2 + 10m + 5
⇔ 3m2 + 10m + 3 = 0
\( \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = \frac{{ - 1}}{3}\end{array} \right.\) (thỏa mãn điều kiện).
Vậy có hai giá trị của m thỏa mãn điều kiện m = −3; \(m = \frac{{ - 1}}{3}\).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Câu 5:
Cho 6 điểm phân biệt A, B, C, D, E, F chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AC} + \overrightarrow {DB} \).
b) \(\overrightarrow {AD} - \overrightarrow {EB} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \).
Câu 6:
Câu 7:
Tìm ƯCLN và tập hợp ước chung của các số sau:
a) 10; 20; 70;
b) 5661; 5291; 4292.
về câu hỏi!