Câu hỏi:
01/04/2023 1,685Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: B.
Theo đề bài ∆SAB đều nên SH ⊥ AB suy ra SH ⊥ (ABCD).
Gọi I = AC ∩ HK.
Do ABCD là hình vuông nên AC ⊥ BD.
Mà HK // BD (H là đường trung bình của \(\Delta ABD\) nên AC ⊥ HK.
Do đó AI ⊥ BD.
Ta có: \(\left\{ \begin{array}{l}AI \bot HK\\AI \bot SH(SH \bot (ABCD))\end{array} \right.\)\( \Rightarrow AI \bot (SHK)\).
Suy ra SI là hình chiếu của SA lên (SHK).
Gọi = AC ∩ BD, áp dụng định lí Ta-lét ta có:
\(\frac{{AI}}{{OA}} = \frac{{AH}}{{AB}} = \frac{1}{2} \Rightarrow AI = \frac{1}{2}OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{4}\).
Xét ∆SIA vuông tại I ta có: \(\widehat {ISA} = \frac{{AI}}{{SA}} = \frac{{\frac{{a\sqrt 2 }}{4}}}{a} = \frac{{\sqrt 2 }}{4}\).
Vậy \[\sin \widehat {\left( {SA;\,\,\left( {SHK} \right)} \right)} = \frac{{\sqrt 2 }}{4}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Câu 5:
Cho 6 điểm phân biệt A, B, C, D, E, F chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AC} + \overrightarrow {DB} \).
b) \(\overrightarrow {AD} - \overrightarrow {EB} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \).
Câu 6:
Câu 7:
Tìm ƯCLN và tập hợp ước chung của các số sau:
a) 10; 20; 70;
b) 5661; 5291; 4292.
về câu hỏi!