Câu hỏi:

01/04/2023 2,897 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: B.

Media VietJack

Theo đề bài ∆SAB đều nên SH AB suy ra SH (ABCD).

Gọi I = AC ∩ HK.

Do ABCD là hình vuông nên AC BD.

Mà HK // BD (H là đường trung bình của \(\Delta ABD\) nên AC HK.

Do đó AI BD.

Ta có: \(\left\{ \begin{array}{l}AI \bot HK\\AI \bot SH(SH \bot (ABCD))\end{array} \right.\)\( \Rightarrow AI \bot (SHK)\).

Suy ra SI là hình chiếu của SA lên (SHK).

 Media VietJack

Gọi = AC ∩ BD, áp dụng định lí Ta-lét ta có:

\(\frac{{AI}}{{OA}} = \frac{{AH}}{{AB}} = \frac{1}{2} \Rightarrow AI = \frac{1}{2}OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{4}\).

Xét ∆SIA vuông tại I ta có: \(\widehat {ISA} = \frac{{AI}}{{SA}} = \frac{{\frac{{a\sqrt 2 }}{4}}}{a} = \frac{{\sqrt 2 }}{4}\).

Vậy \[\sin \widehat {\left( {SA;\,\,\left( {SHK} \right)} \right)} = \frac{{\sqrt 2 }}{4}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Hàm số y = ln(x2 – 2mx + m) có tập xác định D = ℝ khi và chỉ khi

x2 – 2mx + 4 > 0 với mọi x ℝ.

\( \Rightarrow \left\{ \begin{array}{l}\Delta ' < 0\forall x\\1 > 0\end{array} \right.\)

\( \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2\)

Vậy \( - 2 < m < 2\) thỏa mãn yêu cầu bài toán.

Câu 2

Lời giải

Lời giải

Đáp án đúng là A.

Media VietJack

Ta có: \(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} = \frac{{CA}}{{\sin B}}\)

\( \Rightarrow \left\{ \begin{array}{l}BC = \frac{{\sin A}}{{\sin C}}\,.\,AB\\CA = \frac{{\sin B}}{{\sin C}}\,.\,AB\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}BC = 2.6 = 12\\CA = \frac{4}{3}.6 = 8\end{array} \right.\).

Vậy chu vi tam giác ABC là: AB + BC +CA = 6 + 12 + 8 = 26.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP