Câu hỏi:
01/04/2023 74Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có: a + b = 1 ⇔ a2 + b2 + 2ab = 1.
Mà a2 + b2 – 2ab ≥ 0 nên \({a^2} + {b^2} \ge \frac{1}{2}\)
\( \Rightarrow {a^4} + 2{a^2}{b^2} + {b^4} \ge \frac{1}{4}\)
Mà a4 – 2a2b2 + b4 ≥ 0
\( \Rightarrow 2\left( {{a^4} + {b^4}} \right) \ge \frac{1}{4}\)
\( \Rightarrow {a^4} + {b^4} \ge \frac{1}{8}\) (*)
Áp dụng bất đẳng thức Cô-si, ta có: \(a + b \ge 2\sqrt {ab} \)
\( \Rightarrow ab \le \frac{{a + b}}{4} = \frac{1}{4}\)
\( \Rightarrow \frac{1}{{ab}} \ge \frac{1}{{\frac{1}{4}}} = 4\) (**)
Cộng vế với vế của (*) và (**) suy ra \(A = 8\left( {{a^4} + {b^4}} \right) + \frac{1}{{ab}} \ge 1 + 4 = 5\) (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Câu 5:
Cho 6 điểm phân biệt A, B, C, D, E, F chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AC} + \overrightarrow {DB} \).
b) \(\overrightarrow {AD} - \overrightarrow {EB} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \).
Câu 6:
Câu 7:
Tìm ƯCLN và tập hợp ước chung của các số sau:
a) 10; 20; 70;
b) 5661; 5291; 4292.
về câu hỏi!