Câu hỏi:

19/04/2023 167

Cho 2 điểm A(3; 0), B(0; 4). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp ∆OAB là ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình đường thẳng AB là: \(\frac{x}{3} + \frac{y}{4} = 1 \Leftrightarrow 4x + 3y - 12 = 0\)

Giả sử đường tròn (C) có tâm I(a; b).

Đường trong (C) nội tiếp ∆OAB, suy ra (C) có bán kính nhỏ nhất và tiếp xúc Ox, Oy, AB

R = d(I, Ox) = d(I, Oy) = d(I, AB)

\( \Rightarrow R = \left| b \right| = \left| a \right| = \frac{{\left| {4a + 3a - 12} \right|}}{5} \Leftrightarrow 5\left| a \right| = \left| {7a - 12} \right|\)

TH1: Nếu a = b, ta có \(\left| a \right| = \frac{{\left| {4a + 3a - 12} \right|}}{5} \Leftrightarrow 5\left| a \right| = \left| {7a - 12} \right|\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5a = 7a - 12}\\{5a = 12 - 7a}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = 6}\\{a = 1}\end{array}} \right.\)

TH2: Nếu a – b, ta có \(\left| a \right| = \frac{{\left| {4a - 3a - 12} \right|}}{5} \Leftrightarrow 5\left| a \right| = \left| {a - 12} \right|\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5a = a - 12}\\{5a = 12 - a}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = - 3}\\{a = 2}\end{array}} \right.\)

Vì (C) có bán kính nhỏ nhất nên chọn R = \(\left| a \right| = 1\)

Suy ra (C) có tâm I(1; 1) và R = 1 (C): \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\)

\( \Leftrightarrow {x^2} + {y^2} - 2x - 2y + 1 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì α là góc tù nên \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } \).

Do đó, sin α – cos α = \(\frac{4}{5}\)

\( \Leftrightarrow \sqrt {1 - {{\cos }^2}\alpha } - \cos \alpha = \frac{4}{5}\)

\( \Leftrightarrow \sqrt {1 - {{\cos }^2}\alpha } = \cos \alpha + \frac{4}{5} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 - {{\cos }^2}\alpha = {{\left( {\cos \alpha + \frac{4}{5}} \right)}^2}}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{50{{\cos }^2}\alpha + 40\cos \alpha - 9 = 0}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{\cos \alpha = \frac{{ - 4 + \sqrt {34} }}{{10}}}\\{\cos \alpha = \frac{{ - 4 - \sqrt {34} }}{{10}}}\end{array}} \right.}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right. \Leftrightarrow \cos \alpha = - \frac{{4 + \sqrt {34} }}{{10}}\) (do α tù)

m = sin α – 2cos α = (sin α – cos α) – cos α = \(\frac{4}{5} + \frac{{4 + \sqrt {34} }}{{10}} = \frac{{12 + \sqrt {34} }}{{10}}\).

Lời giải

Cho (O; R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A vẽ 2 tiếp tuyến  (ảnh 1)

a. Ta có AB, AC là tiếp tuyến của (O) AB BO, AC CO

M là trung điểm DE OM DE

\( \Rightarrow \widehat {ABO} = \widehat {AMO} = \widehat {ACO} = 90^\circ \)

A, B, M, O, C đường tròn đường kính AO

b. Xét ∆SCD, ∆SCB có:

Chung \(\widehat S\)

\(\widehat {SCD} = \widehat {SBC}\)vì SC là tiếp tuyến của (O)

∆SAD \(\# \) ∆SBC (g.g)

\( \Rightarrow \frac{{SC}}{{SB}} = \frac{{SD}}{{SC}} \Rightarrow S{C^2} = SB.SD\)

c. Xét ∆SAD, ∆SAB có:

Chung \(\widehat S\)

\(\widehat {SAD} = \widehat {DEB} = \widehat {ABS}\) vì AB là tiếp tuyến của (O) và BE //AC

∆SAD \(\# \) ∆SBA (g.g)

\( \Rightarrow \frac{{SA}}{{SB}} = \frac{{SD}}{{SA}} \Rightarrow S{A^2} = SB.SD \Rightarrow S{A^2} = S{C^2} \Rightarrow SA = SC\)

Lại có AC // BE

\( \Rightarrow \frac{{BH}}{{SC}} = \frac{{VH}}{{VS}} = \frac{{HE}}{{AS}} \Rightarrow BH = HE\)

H là trung điểm BE OH BE (1)

Ta có BE // AC

\( \Rightarrow \widehat {EBC} = \widehat {ACB} = \widehat {CEB}\) ∆CBE cân tại C CO BE (2)

Từ (1), (2) C, O, H thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP