Câu hỏi:
19/04/2023 101Cho 2 điểm A(3; 0), B(0; 4). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp ∆OAB là ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương trình đường thẳng AB là: \(\frac{x}{3} + \frac{y}{4} = 1 \Leftrightarrow 4x + 3y - 12 = 0\)
Giả sử đường tròn (C) có tâm I(a; b).
Đường trong (C) nội tiếp ∆OAB, suy ra (C) có bán kính nhỏ nhất và tiếp xúc Ox, Oy, AB
⇒ R = d(I, Ox) = d(I, Oy) = d(I, AB)
\( \Rightarrow R = \left| b \right| = \left| a \right| = \frac{{\left| {4a + 3a - 12} \right|}}{5} \Leftrightarrow 5\left| a \right| = \left| {7a - 12} \right|\)
TH1: Nếu a = b, ta có \(\left| a \right| = \frac{{\left| {4a + 3a - 12} \right|}}{5} \Leftrightarrow 5\left| a \right| = \left| {7a - 12} \right|\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5a = 7a - 12}\\{5a = 12 - 7a}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = 6}\\{a = 1}\end{array}} \right.\)
TH2: Nếu a – b, ta có \(\left| a \right| = \frac{{\left| {4a - 3a - 12} \right|}}{5} \Leftrightarrow 5\left| a \right| = \left| {a - 12} \right|\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5a = a - 12}\\{5a = 12 - a}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = - 3}\\{a = 2}\end{array}} \right.\)
Vì (C) có bán kính nhỏ nhất nên chọn R = \(\left| a \right| = 1\)
Suy ra (C) có tâm I(1; 1) và R = 1 ⇒ (C): \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\)
\( \Leftrightarrow {x^2} + {y^2} - 2x - 2y + 1 = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho α là góc tù và sinα – cosα = \(\frac{4}{5}\). Giá trị của M = sinα – 2cosα là ?
Câu 2:
Viết chương trình nhập số nguyên dương n. Kiểm tra n có phải là số nguyên tố hay không ?
– Input: 3
– Output: 3 là số nguyên tố
Câu 3:
Tìm tập xác định của hàm số \(y = \frac{{1 - 2\cos x}}{{\sin 3x - {\mathop{\rm s}\nolimits} {\rm{inx}}}}\).
Câu 4:
Lớp 5A có số học sinh giỏi bằng \(\frac{1}{3}\)số học sinh cả lớp. Số học sinh khá bằng \(\frac{3}{7}\) số học sinh cả lớp. Số học sinh trung bình bằng \(\frac{1}{6}\) số học sinh cả lớp và còn lại 3 em học sinh kém. Hỏi lớp 5A có bao nhiêu học sinh giỏi?
Câu 6:
Cho ∆ABC, tìm vị trí điểm I sao cho \(2\overrightarrow {IA} - 3\overrightarrow {IB} - \overrightarrow {IC} = \overrightarrow 0 \).
Câu 7:
Tìm các số nguyên x, y thỏa mãn: \(5{x^2} - 4xy + {y^2} = 169\).
về câu hỏi!