Câu hỏi:
12/07/2024 126
Cho \(f\left( x \right) = \left( {{m^2} - 3m + 2} \right){x^2} + 2(2 - m)x - 2\left( 1 \right)\). Tìm m để f(x) = 0 có 2 nghiệm dương phân biệt.
Cho \(f\left( x \right) = \left( {{m^2} - 3m + 2} \right){x^2} + 2(2 - m)x - 2\left( 1 \right)\). Tìm m để f(x) = 0 có 2 nghiệm dương phân biệt.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
\(f\left( x \right) = \left( {{m^2} - 3m + 2} \right){x^2} + 2(2 - m)x - 2\)
Cho f(x) = 0. Để f(x) có 2 nghiệm dương phân biệt.
\(\left\{ {\begin{array}{*{20}{c}}{a \ne 0}\\{\Delta ' > 0}\\{P > 0}\\{S > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} - 3m + 2 \ne 0}\\{{{\left( {2 - m} \right)}^2} - \left( {{m^2} - 3m + 2} \right)\left( { - 2} \right) > 0}\\{\frac{2}{{{m^2} - 3m + 2}} > 0}\\{\frac{{ - 4 + 2m}}{{{m^2} - 3m + 2}} > 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 2;m \ne 1}\\{4 - 4m + {m^2} + 2{m^2} - 6m + 4 > 0}\\{{m^2} - 3m + 2 > 0}\\{1 < m < 2;m > 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 2;m \ne 1}\\{3{m^2} - 10m + 8 > 0}\\{m < 1;m > 2}\\{1 < m < 2;m > 2}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 2,m \ne 1}\\{m < \frac{4}{3},m > 2}\\{m < 1;m > 2}\\{1 < m < 2;m > 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m < 1}\\{m > 2}\end{array}} \right.\).
Để f(x) = 0, f(x) có 2 nghiệm dương phân biệt
⇒ m ∈ (–∞; 1) ∪ (2; +∞).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì α là góc tù nên \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } \).
Do đó, sin α – cos α = \(\frac{4}{5}\)
\( \Leftrightarrow \sqrt {1 - {{\cos }^2}\alpha } - \cos \alpha = \frac{4}{5}\)
\( \Leftrightarrow \sqrt {1 - {{\cos }^2}\alpha } = \cos \alpha + \frac{4}{5} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 - {{\cos }^2}\alpha = {{\left( {\cos \alpha + \frac{4}{5}} \right)}^2}}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{50{{\cos }^2}\alpha + 40\cos \alpha - 9 = 0}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{\cos \alpha = \frac{{ - 4 + \sqrt {34} }}{{10}}}\\{\cos \alpha = \frac{{ - 4 - \sqrt {34} }}{{10}}}\end{array}} \right.}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right. \Leftrightarrow \cos \alpha = - \frac{{4 + \sqrt {34} }}{{10}}\) (do α tù)
⇒ m = sin α – 2cos α = (sin α – cos α) – cos α = \(\frac{4}{5} + \frac{{4 + \sqrt {34} }}{{10}} = \frac{{12 + \sqrt {34} }}{{10}}\).
Lời giải

a. Ta có AB, AC là tiếp tuyến của (O) ⇒ AB ⊥ BO, AC ⊥ CO
M là trung điểm DE ⇒ OM ⊥ DE
\( \Rightarrow \widehat {ABO} = \widehat {AMO} = \widehat {ACO} = 90^\circ \)
⇒ A, B, M, O, C ∈ đường tròn đường kính AO
b. Xét ∆SCD, ∆SCB có:
Chung \(\widehat S\)
\(\widehat {SCD} = \widehat {SBC}\)vì SC là tiếp tuyến của (O)
⇒ ∆SAD \(\# \) ∆SBC (g.g)
\( \Rightarrow \frac{{SC}}{{SB}} = \frac{{SD}}{{SC}} \Rightarrow S{C^2} = SB.SD\)
c. Xét ∆SAD, ∆SAB có:
Chung \(\widehat S\)
\(\widehat {SAD} = \widehat {DEB} = \widehat {ABS}\) vì AB là tiếp tuyến của (O) và BE //AC
⇒ ∆SAD \(\# \) ∆SBA (g.g)
\( \Rightarrow \frac{{SA}}{{SB}} = \frac{{SD}}{{SA}} \Rightarrow S{A^2} = SB.SD \Rightarrow S{A^2} = S{C^2} \Rightarrow SA = SC\)
Lại có AC // BE
\( \Rightarrow \frac{{BH}}{{SC}} = \frac{{VH}}{{VS}} = \frac{{HE}}{{AS}} \Rightarrow BH = HE\)
H là trung điểm BE ⇒ OH ⊥ BE (1)
Ta có BE // AC
\( \Rightarrow \widehat {EBC} = \widehat {ACB} = \widehat {CEB}\) ⇒ ∆CBE cân tại C ⇒ CO ⊥ BE (2)
Từ (1), (2) ⇒ C, O, H thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.