Câu hỏi:

12/07/2024 1,451

Trong hệ tọa độ Oxy, cho 2 điểm A(2; 3); B(4; –1). Giao điểm của đường thẳng AB với trục tung tại M, đặt \(\overrightarrow {MA} = k\overrightarrow {MB} \), giá trị của k là ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(M({x_M};{y_M})\)

Vì M Oy M(0;\({y_M}\))

Ta có:

\(\overrightarrow {MA} = (2 - 0;3 - {y_M}) = (2;3 - {y_M})\)

\(\overrightarrow {MB} = \left( {4 - 0; - 1 - {y_M}} \right) = \left( {4; - 1 - {y_M}} \right) \Rightarrow k\overrightarrow {MB} = \left( {4k; - 1k - {y_M}k} \right)\)

Khi đó: \(\overrightarrow {MA} = k\overrightarrow {MB} \)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2 = 4k}\\{3 - {y_M} = - 1k - {y_M}k}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{3 - {y_M} = - 1k - {y_M}k}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{3 - {y_M} = - 1.\frac{1}{2} - {y_M}.\frac{1}{2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{3 - {y_M} = - \frac{1}{2} - \frac{1}{2}{y_M}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{ - {y_M} + \frac{1}{2}{y_M} = - \frac{1}{2} - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{ - \frac{1}{2}{y_M} = - \frac{7}{2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = \frac{1}{2}}\\{{y_M} = 7}\end{array}} \right.\)

Vậy giá trị của k là \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì α là góc tù nên \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } \).

Do đó, sin α – cos α = \(\frac{4}{5}\)

\( \Leftrightarrow \sqrt {1 - {{\cos }^2}\alpha } - \cos \alpha = \frac{4}{5}\)

\( \Leftrightarrow \sqrt {1 - {{\cos }^2}\alpha } = \cos \alpha + \frac{4}{5} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 - {{\cos }^2}\alpha = {{\left( {\cos \alpha + \frac{4}{5}} \right)}^2}}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{50{{\cos }^2}\alpha + 40\cos \alpha - 9 = 0}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{\cos \alpha = \frac{{ - 4 + \sqrt {34} }}{{10}}}\\{\cos \alpha = \frac{{ - 4 - \sqrt {34} }}{{10}}}\end{array}} \right.}\\{\cos \alpha \ge - \frac{4}{5}}\end{array}} \right. \Leftrightarrow \cos \alpha = - \frac{{4 + \sqrt {34} }}{{10}}\) (do α tù)

m = sin α – 2cos α = (sin α – cos α) – cos α = \(\frac{4}{5} + \frac{{4 + \sqrt {34} }}{{10}} = \frac{{12 + \sqrt {34} }}{{10}}\).

Lời giải

Cho (O; R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A vẽ 2 tiếp tuyến  (ảnh 1)

a. Ta có AB, AC là tiếp tuyến của (O) AB BO, AC CO

M là trung điểm DE OM DE

\( \Rightarrow \widehat {ABO} = \widehat {AMO} = \widehat {ACO} = 90^\circ \)

A, B, M, O, C đường tròn đường kính AO

b. Xét ∆SCD, ∆SCB có:

Chung \(\widehat S\)

\(\widehat {SCD} = \widehat {SBC}\)vì SC là tiếp tuyến của (O)

∆SAD \(\# \) ∆SBC (g.g)

\( \Rightarrow \frac{{SC}}{{SB}} = \frac{{SD}}{{SC}} \Rightarrow S{C^2} = SB.SD\)

c. Xét ∆SAD, ∆SAB có:

Chung \(\widehat S\)

\(\widehat {SAD} = \widehat {DEB} = \widehat {ABS}\) vì AB là tiếp tuyến của (O) và BE //AC

∆SAD \(\# \) ∆SBA (g.g)

\( \Rightarrow \frac{{SA}}{{SB}} = \frac{{SD}}{{SA}} \Rightarrow S{A^2} = SB.SD \Rightarrow S{A^2} = S{C^2} \Rightarrow SA = SC\)

Lại có AC // BE

\( \Rightarrow \frac{{BH}}{{SC}} = \frac{{VH}}{{VS}} = \frac{{HE}}{{AS}} \Rightarrow BH = HE\)

H là trung điểm BE OH BE (1)

Ta có BE // AC

\( \Rightarrow \widehat {EBC} = \widehat {ACB} = \widehat {CEB}\) ∆CBE cân tại C CO BE (2)

Từ (1), (2) C, O, H thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP