Câu hỏi:

13/07/2024 1,237

Cho tam giác ABC. Dựng phía ngoài tam giác các tam giác đều ABC', BCA', CAB'. Gọi M, N, P lần lượt là trung điểm của CA’, AB’, AC’. Chứng minh rằng:

a) MN = PC.

b) Gọi O là giao điểm của MN và PC. Chứng minh \(\widehat {MOC} = 60^\circ \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC. Dựng phía ngoài tam giác các tam giác đều ABC', BCA' (ảnh 1)

a) Gọi R là trung điểm của BC, Q là trung điểm của AC,

Xét tam giác ABC có R là trung điểm của BC, Q là trung điểm của AC,

Suy ra QR là đường trung bình của tam giác

Do đó QR // AB, \[QR = \frac{1}{2}AB\]

Suy ra \(\widehat {BAC} = \widehat {RQC}\) (hai góc đồng vị)

Vì tam giác ABC’ đều có P là trung điểm của AC’

Nên \(\widehat {ABC'} = \widehat {AC'B} = \widehat {BAC'} = 60^\circ \),

\[QR = \frac{1}{2}AB\]

Suy ra AP = QR

Xét tam giác AB’C có N là trung điểm của B’A, Q là trung điểm của AC

Suy ra QN là đường trung bình

Do đó QN // CB’,

Suy ra \(\widehat {NQC} + \widehat {QCB'} = 180^\circ \)

Hay \(\widehat {NQC} = 180^\circ - \widehat {QCB'} = 180 - 60^\circ = 120^\circ \)

Vì tam giác AB’C đều có N là trung điểm của AB’

Nên \(\widehat {AB'C} = \widehat {ACB'} = \widehat {B'AC} = 60^\circ \),

Suy ra QN = AN

Ta có \(\widehat {NAP} = \widehat {NAC} + \widehat {CAB} + \widehat {BAP} = 60^\circ + \widehat {CAB} + 60^\circ = \widehat {CAB} + 120^\circ \)

\(\widehat {NQ{\rm{R}}} = \widehat {CQ{\rm{R}}} + \widehat {NQC} = \widehat {CQ{\rm{R}}} + 120^\circ \)

Lại có \(\widehat {BAC} = \widehat {RQC}\) (chứng minh trên)

Suy ra \(\widehat {NAP} = \widehat {NQR}\)

Xét tam giác ANP và tam giác QNR có

QN = AN (chứng minh trên)

\(\widehat {NAP} = \widehat {NQR}\) (chứng minh trên)

AP = QR (chứng minh trên)

Do đó DANP = DQNR (c.g.c)

Suy ra PN = NR, \(\widehat {ANP} = \widehat {QNR}\)

Xét tam giác ANQ có

Suy ra tam giác ANQ đều

Do đó \(\widehat {ANQ} = 60^\circ \)

Hay \(\widehat {ANP} + \widehat {PNQ} = 60^\circ \)

\(\widehat {ANP} = \widehat {QNR}\)

Suy ra \(\widehat {QN{\rm{R}}} + \widehat {PNQ} = 60^\circ \)

Hay \(\widehat {PNR} = 60^\circ \)

Mặt khác NP = NR (chứng minh trên)

Suy ra tam giác PNR đều

Do đó RN = RP

Xét tam giác A’BC có R là trung điểm của BC, M là trung điểm của A’C

Suy ra RM là đường trung bình

Do đó RM // BA’,

Vì tam giác A’BC đều có R là trung điểm của BC

Nên \(\widehat {A'BC} = \widehat {A'CB} = \widehat {BA'C} = 60^\circ \),

Suy ra RC = RM

Ta có \(\widehat {P{\rm{R}}C} = \widehat {PRN} + \widehat {RNC} = 60^\circ + \widehat {RNC}\)

\(\widehat {N{\rm{RM}}} = \widehat {CRM} + \widehat {NRC} = 60^\circ + \widehat {NRC}\)

Suy ra \(\widehat {PRC} = \widehat {NRM}\)

Xét tam giác PRC và tam giác NRM có

PR = RN (chứng minh trên)

\(\widehat {PRC} = \widehat {NRM}\) (chứng minh trên)

RC = RM (chứng minh trên)

Do đó DPRC = DNRM (c.g.c)

Suy ra PC = NM (hai cạnh tương ứng)

b) Vì PRC = NRM (chứng minh câu a)

Nên \(\widehat {RPC} = \widehat {RNM}\) (hai góc tương ứng)

Xét tam giác PNO có \(\widehat {PNO} + \widehat {PON} + \widehat {OPN} = 180^\circ \) (tổng ba góc trong một tam giác)

Hay \(\widehat {PNR} + \widehat {RNM} + \widehat {PON} + \widehat {OPN} = 180^\circ \)

\(\widehat {RPC} = \widehat {RNM}\)

Suy ra \(\widehat {PON} = 180^\circ - \widehat {NP{\rm{R}}} - \widehat {PN{\rm{R}}} = 180^\circ - 60^\circ - 60^\circ = 60^\circ \)

Lại có \(\widehat {PON} = \widehat {MOC}\) (hai góc đối đỉnh)

Suy ra \(\widehat {MOC} = 60^\circ \)

Vậy \(\widehat {MOC} = 60^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh (ảnh 1)

a) Xét tam giác ADB và tam giác ADC

AB = AC (giả thiết)

DB = DC (vì D là trung điểm của BC)

AD là cạnh chung

Suy ra ADB = ADC ( c.c.c)

b) ADB = ADC (chứng minh câu a)

Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)

Suy ra AD là phân giác của góc BAC

c) ADB = ADC (chứng minh câu a)

Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)

\(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)

Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)

Hay AD BC

Vậy AD BC.

Lời giải

a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}

Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

Cho biểu thức P = ( (2 + x) / (2 - x) - 4x^2 / (x^2 - 4) - (2 - x) / (2 + x) (ảnh 1)

b) Với x ≠ {– 2; 0; 2; 3}, ta có

\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)

\(P:4 = x + 3 + \frac{9}{{x - 3}}\)

Để P 4 thì 9 x – 3

Suy ra x – 3 Ư(9) = {1; 3; 9; – 1; – 3; – 9}

Do đó x {4; 6; 12; 2; 0; – 6}

Mà x ≠ {– 2; 0; 2; 3}

Suy ra x {4; 6; 12; – 6}

Vậy x {4; 6; 12; – 6}.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP