Câu hỏi:

13/07/2024 505

Cho các điểm A(1; 2), B(2; 3) C(0; 4). Diện tích tam giác ABC bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có A(1; 2), B(2; 3) C(0; 4)

Cho các điểm A(1; - 2), B(- 2; 3) và C(0; 4). Diện tích tam giác ABC bằng  (ảnh 1)

Nửa chu vi tam giác ABC là:

\(p = \frac{{AB + BC + CA}}{2} = \frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2}\)

Suy ra:

\(p - AB = \frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2} - \sqrt {34} = \frac{{\sqrt 5 + \sqrt {37} - \sqrt {34} }}{2}\)

\(p - BC = \frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2} - \sqrt 5 = \frac{{\sqrt {34} + \sqrt {37} - \sqrt 5 }}{2}\)

\(p - CA = \frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2} - \sqrt {37} = \frac{{\sqrt 5 + \sqrt {34} - \sqrt {37} }}{2}\)

Diện tích tam giác ABC là:

\({S_{ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - CA} \right)} \)

\( = \sqrt {\frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2}.\left( {\frac{{\sqrt 5 + \sqrt {37} - \sqrt {34} }}{2}} \right).\left( {\frac{{\sqrt {34} + \sqrt {37} - \sqrt 5 }}{2}} \right).\left( {\frac{{\sqrt {34} + \sqrt 5 - \sqrt {37} }}{2}} \right)} \)

\( = \sqrt {\left( {\frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2}} \right).\left( {\frac{{\sqrt {34} + \sqrt 5 - \sqrt {37} }}{2}} \right)\left( {\frac{{\sqrt {37} + \sqrt 5 - \sqrt {34} }}{2}} \right).\left[ {\frac{{\sqrt {37} - \left( {\sqrt 5 - \sqrt {34} } \right)}}{2}} \right]} \)

\[ = \frac{{\sqrt {\left[ {{{\left( {\sqrt {34} + \sqrt 5 } \right)}^2} - 37} \right].\left[ {37 - {{\left( {\sqrt 5 - \sqrt {34} } \right)}^2}} \right]} }}{4}\]

\[ = \frac{{\sqrt {\left[ {34 + 2\sqrt {170} + 5 - 37} \right].\left[ {37 - \left( {5 - 2\sqrt {170} + 34} \right)} \right]} }}{4}\]

\[ = \frac{{\sqrt {\left( {2 + 2\sqrt {170} } \right).\left( {2\sqrt {170} - 2} \right)} }}{4}\]

\[ = \frac{{\sqrt {4.170 - 4} }}{4} = \frac{{2.\sqrt {170 - 1} }}{4} = \frac{{\sqrt {169} }}{2} = \frac{{13}}{2}\]

Vậy diện tích tam giác ABC bằng \(\frac{{13}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh (ảnh 1)

a) Xét tam giác ADB và tam giác ADC

AB = AC (giả thiết)

DB = DC (vì D là trung điểm của BC)

AD là cạnh chung

Suy ra ADB = ADC ( c.c.c)

b) ADB = ADC (chứng minh câu a)

Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)

Suy ra AD là phân giác của góc BAC

c) ADB = ADC (chứng minh câu a)

Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)

\(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)

Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)

Hay AD BC

Vậy AD BC.

Lời giải

a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}

Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

Cho biểu thức P = ( (2 + x) / (2 - x) - 4x^2 / (x^2 - 4) - (2 - x) / (2 + x) (ảnh 1)

b) Với x ≠ {– 2; 0; 2; 3}, ta có

\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)

\(P:4 = x + 3 + \frac{9}{{x - 3}}\)

Để P 4 thì 9 x – 3

Suy ra x – 3 Ư(9) = {1; 3; 9; – 1; – 3; – 9}

Do đó x {4; 6; 12; 2; 0; – 6}

Mà x ≠ {– 2; 0; 2; 3}

Suy ra x {4; 6; 12; – 6}

Vậy x {4; 6; 12; – 6}.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP