Câu hỏi:
25/04/2023 471
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; – 7) và B (2; – 8). Tính y(– 1)
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; – 7) và B (2; – 8). Tính y(– 1)
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì đồ thị hàm số đi qua A và B nên

Từ (1), (2) và (3) suy ra
\(\left\{ \begin{array}{l}7{\rm{a}} + 3b + c = - 1\\3{\rm{a}} + 2b + c = 0\\12{\rm{a}} + 4b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7{\rm{a}} + 3b + c = - 1\\{\rm{4a}} + b = - 1\\{\rm{9a}} + 2b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 9\\c = 12\end{array} \right.\)
Suy ra d = – 12
Khi đó y(– 1) = – a + b – c + d = – 35
Vậy ta chọn đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ADB và tam giác ADC có
AB = AC (giả thiết)
DB = DC (vì D là trung điểm của BC)
AD là cạnh chung
Suy ra △ADB = △ADC ( c.c.c)
b) Vì △ADB = △ADC (chứng minh câu a)
Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)
Suy ra AD là phân giác của góc BAC
c) Vì △ADB = △ADC (chứng minh câu a)
Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)
Mà \(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)
Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)
Hay AD ⊥ BC
Vậy AD ⊥ BC.
Lời giải
a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}
Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

b) Với x ≠ {– 2; 0; 2; 3}, ta có
\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)
\(P:4 = x + 3 + \frac{9}{{x - 3}}\)
Để P ⋮ 4 thì 9 ⋮ x – 3
Suy ra x – 3 ∈ Ư(9) = {1; 3; 9; – 1; – 3; – 9}
Do đó x ∈ {4; 6; 12; 2; 0; – 6}
Mà x ≠ {– 2; 0; 2; 3}
Suy ra x ∈ {4; 6; 12; – 6}
Vậy x ∈ {4; 6; 12; – 6}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.