Cho A (– 1; 2); B(2; 0); C(3; 4).
a) Tính tọa độ trung điểm I của AC.
b) Tính tọa độ trọng tâm G của tam giác ABC.
c) Tính tọa độ D: ABCD theo thứ tự là hình bình hành.
d) Tìm tọa độ E sao cho: \(3\overrightarrow {E{\rm{A}}} + 2\overrightarrow {EB} - \overrightarrow {EC} = \overrightarrow 0 \).
Cho A (– 1; 2); B(2; 0); C(3; 4).
a) Tính tọa độ trung điểm I của AC.
b) Tính tọa độ trọng tâm G của tam giác ABC.
c) Tính tọa độ D: ABCD theo thứ tự là hình bình hành.
d) Tìm tọa độ E sao cho: \(3\overrightarrow {E{\rm{A}}} + 2\overrightarrow {EB} - \overrightarrow {EC} = \overrightarrow 0 \).Quảng cáo
Trả lời:

a) Vì I là trung điểm của AC nên
\(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_C}}}{2} = \frac{{ - 1 + 3}}{2} = 1\\{y_I} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 4}}{2} = 3\end{array} \right.\)
Vậy I (1; 3)
b) Vì G là trọng tâm tam giác ABC nên
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{ - 1 + 2 + 3}}{3} = \frac{4}{3}\\{y_G} = \frac{{{x_A} + {y_B} + {x_C}}}{3} = \frac{{2 + 0 + 4}}{3} = 2\end{array} \right.\)
Vậy G (\(\frac{4}{3}\); 2)
c) Vì ABCD là hình bình hành nên
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}2 + 1 = 3 - {x_D}\\0 - 2 = 4 - {y_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 6\end{array} \right.\)
Vậy D(0; 6)
d) Gọi K là trung điểm của AB
Suy ra \(\overrightarrow {E{\rm{A}}} + \overrightarrow {EB} = 2\overrightarrow {EK} \) và \(K\left( {\frac{1}{2};1} \right)\)
Ta có \(3\overrightarrow {E{\rm{A}}} + 2\overrightarrow {EB} - \overrightarrow {EC} = \overrightarrow {E{\rm{A}}} - \overrightarrow {EC} + 2\overrightarrow {E{\rm{A}}} + 2\overrightarrow {EB} = \overrightarrow {CA} + 4\overrightarrow {EK} \)
Mà \(3\overrightarrow {E{\rm{A}}} + 2\overrightarrow {EB} - \overrightarrow {EC} = \overrightarrow 0 \) nên \(\overrightarrow {AC} = 4\overrightarrow {EK} \)
Suy ra \[\left\{ \begin{array}{l}3 + 1 = 4\left( {\frac{1}{3} - {x_E}} \right)\\4 - 2 = 4\left( {1 - {y_E}} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = \frac{{ - 2}}{3}\\{y_E} = \frac{1}{2}\end{array} \right.\]
Vậy \(E\left( {\frac{{ - 2}}{3};\frac{1}{2}} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ADB và tam giác ADC có
AB = AC (giả thiết)
DB = DC (vì D là trung điểm của BC)
AD là cạnh chung
Suy ra △ADB = △ADC ( c.c.c)
b) Vì △ADB = △ADC (chứng minh câu a)
Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)
Suy ra AD là phân giác của góc BAC
c) Vì △ADB = △ADC (chứng minh câu a)
Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)
Mà \(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)
Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)
Hay AD ⊥ BC
Vậy AD ⊥ BC.
Lời giải
a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}
Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

b) Với x ≠ {– 2; 0; 2; 3}, ta có
\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)
\(P:4 = x + 3 + \frac{9}{{x - 3}}\)
Để P ⋮ 4 thì 9 ⋮ x – 3
Suy ra x – 3 ∈ Ư(9) = {1; 3; 9; – 1; – 3; – 9}
Do đó x ∈ {4; 6; 12; 2; 0; – 6}
Mà x ≠ {– 2; 0; 2; 3}
Suy ra x ∈ {4; 6; 12; – 6}
Vậy x ∈ {4; 6; 12; – 6}.
Câu 3
A. \(c = 3\sqrt {21} \);
B. \(c = 7\sqrt 2 \);
C. \(c = 2\sqrt {11} \);
D. \(c = 2\sqrt {21} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\overrightarrow {AC} = \overrightarrow {B{\rm{D}}} \);
B. \(\overrightarrow {AC} = \overrightarrow {BC} \);
C. \(\overrightarrow {AD} = \overrightarrow {BC} \);
D. \(\overrightarrow {AD} = \overrightarrow {B{\rm{D}}} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.