Câu hỏi:

25/04/2023 269

Cho 2 đường thẳng \[\left( {{d_1}} \right):y = \frac{1}{2}x + 2\] và (d2): y = − x + 2. Gọi A, B lần lượt là giao điểm của (d1) và (d2) với trục Ox, C là giao điểm của (d1) và (d2). Tính chu vi và diện tích tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình hoành độ giao điểm của (d1) và (d2) có

\[\frac{1}{2}x + 2 = - x + 2\]

\( \Leftrightarrow \frac{3}{2}x = 0\)

x = 0

Suy ra y = 2

Khi đó C(0; 2), suy ra CO = |2| = 2.

Giao điểm A của \[\left( {{d_1}} \right):y = \frac{1}{2}x + 2\] và Ox là điểm A(− 4; 0) nên OA = |–4| = 4.

Giao điểm B của (d2): y = − x + 2 và Ox là điểm B(2; 0) nên OB = |2| = 2.

Ta có AB = OA + OB = 4 + 2 = 6

Cho 2 đường thẳng (d1): y = 1/2x + 2 và (d2): y = -x + 2. Gọi A, B lần lượt  (ảnh 1)

Diện tích tam giác ABC là \[{{\rm{S}}_{ABC}} = \frac{1}{2}.CO.AB = \frac{1}{2}.2.6 = 6\].

Xét DOAC vuông tại O có AC2 = OA2 + OC2

\( \Rightarrow AC = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 \).

Xét DOBC vuông tại O có BC2 = OB2 + OC2

\( \Rightarrow BC = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)

Chu vi tam giác ABC là \(AB + BC + CA = 6 + 2\sqrt 2 + 2\sqrt 5 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh (ảnh 1)

a) Xét tam giác ADB và tam giác ADC

AB = AC (giả thiết)

DB = DC (vì D là trung điểm của BC)

AD là cạnh chung

Suy ra ADB = ADC ( c.c.c)

b) ADB = ADC (chứng minh câu a)

Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)

Suy ra AD là phân giác của góc BAC

c) ADB = ADC (chứng minh câu a)

Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)

\(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)

Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)

Hay AD BC

Vậy AD BC.

Lời giải

a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}

Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

Cho biểu thức P = ( (2 + x) / (2 - x) - 4x^2 / (x^2 - 4) - (2 - x) / (2 + x) (ảnh 1)

b) Với x ≠ {– 2; 0; 2; 3}, ta có

\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)

\(P:4 = x + 3 + \frac{9}{{x - 3}}\)

Để P 4 thì 9 x – 3

Suy ra x – 3 Ư(9) = {1; 3; 9; – 1; – 3; – 9}

Do đó x {4; 6; 12; 2; 0; – 6}

Mà x ≠ {– 2; 0; 2; 3}

Suy ra x {4; 6; 12; – 6}

Vậy x {4; 6; 12; – 6}.

Câu 3

Cho tam giác ABC có a = 8, b = 10, \(\widehat C = 60^\circ \). Độ dài cạnh c là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tứ giác ABCD. Gọi M, N, P lần lượt là trung điểm của AD, BC và AC. Biết MP = PN. Chọn câu đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay