Câu hỏi:

13/07/2024 256

Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. Chứng minh rằng CB là tiếp tuyến của đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc  (ảnh 1)

Gọi H là giao điểm của OC và AB

Vì OA = OB nên ΔAOB cân tại O

Mà OH là đường cao nên cũng là đường phân giác

Do đó \(\widehat {AOC} = \widehat {BOC}\)

Vì AC là tiếp tuyến tại A của đường tròn (O) nên \(\widehat {OAC} = 90^\circ \)

Xét ΔAOC và ΔBOC có

OA = OB

\(\widehat {AOC} = \widehat {BOC}\) (chứng minh trên)

OC là cạnh chung

Do đó ΔAOC = ΔBOC (c.g.c)

Suy ra \(\widehat {OAC} = \widehat {OBC}\) (hai góc tương ứng)

\(\widehat {OAC} = 90^\circ \) nên \(\widehat {OBC} = 90^\circ \)

Suy ra CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

Do đó CB là tiếp tuyến của đường tròn (O) tại B

Vậy CB là tiếp tuyến của đường tròn (O) tại B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh (ảnh 1)

a) Xét tam giác ADB và tam giác ADC

AB = AC (giả thiết)

DB = DC (vì D là trung điểm của BC)

AD là cạnh chung

Suy ra ADB = ADC ( c.c.c)

b) ADB = ADC (chứng minh câu a)

Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)

Suy ra AD là phân giác của góc BAC

c) ADB = ADC (chứng minh câu a)

Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)

\(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)

Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)

Hay AD BC

Vậy AD BC.

Lời giải

a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}

Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

Cho biểu thức P = ( (2 + x) / (2 - x) - 4x^2 / (x^2 - 4) - (2 - x) / (2 + x) (ảnh 1)

b) Với x ≠ {– 2; 0; 2; 3}, ta có

\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)

\(P:4 = x + 3 + \frac{9}{{x - 3}}\)

Để P 4 thì 9 x – 3

Suy ra x – 3 Ư(9) = {1; 3; 9; – 1; – 3; – 9}

Do đó x {4; 6; 12; 2; 0; – 6}

Mà x ≠ {– 2; 0; 2; 3}

Suy ra x {4; 6; 12; – 6}

Vậy x {4; 6; 12; – 6}.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP