Câu hỏi:
13/07/2024 134Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. Chứng minh rằng CB là tiếp tuyến của đường tròn.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi H là giao điểm của OC và AB
Vì OA = OB nên ΔAOB cân tại O
Mà OH là đường cao nên cũng là đường phân giác
Do đó \(\widehat {AOC} = \widehat {BOC}\)
Vì AC là tiếp tuyến tại A của đường tròn (O) nên \(\widehat {OAC} = 90^\circ \)
Xét ΔAOC và ΔBOC có
OA = OB
\(\widehat {AOC} = \widehat {BOC}\) (chứng minh trên)
OC là cạnh chung
Do đó ΔAOC = ΔBOC (c.g.c)
Suy ra \(\widehat {OAC} = \widehat {OBC}\) (hai góc tương ứng)
Mà \(\widehat {OAC} = 90^\circ \) nên \(\widehat {OBC} = 90^\circ \)
Suy ra CB vuông góc với OB, mà OB là bán kính của đường tròn (O)
Do đó CB là tiếp tuyến của đường tròn (O) tại B
Vậy CB là tiếp tuyến của đường tròn (O) tại B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB bằng tam giác ADC.
b) AD là tia phân giác của góc BAC.
c) AD vuông góc BC.
Câu 2:
Cho tam giác ABC có a = 8, b = 10, \(\widehat C = 60^\circ \). Độ dài cạnh c là
Câu 3:
Cho tứ giác ABCD. Gọi M, N, P lần lượt là trung điểm của AD, BC và AC. Biết MP = PN. Chọn câu đúng.
Câu 4:
Trong lớp 10C có 45 học sinh trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Sử, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên.
Câu 5:
Cho A = (m; m + 1) ; B = (3; 5)
a) Tìm m để A hợp B là một khoảng. Xác định các khoảng đó.
b) A ∩ B ≠ ∅.
c) A ∩ B = ∅.
Câu 6:
Tìm giá trị thực của tham số m khác 0 để hàm số y = mx2 – 2mx – 3m – 2 có giá trị nhỏ nhất bằng – 10 trên ℝ.
Câu 7:
Cho tam giác đều cạnh a, trọng tâm G . Tính \(\left| {\overrightarrow {GB} + \overrightarrow {GC} } \right|\).
về câu hỏi!