Câu hỏi:
26/04/2023 392Cho tứ diện S.ABC. Gọi O là điểm thuộc miền trong của tam giác ABC. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh SA, SC sao cho MN không song song với AC. Tìm thiết diện do (MNO) cắt tứ diện S.ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• (OMN) ∩ (SAC) = MN;
• Trong mp(SAC), gọi D = MN ∩ AC.
Trong mp(ABC), gọi P = BC ∩ OD.
Khi đó P ∈ OD ⊂ (OMN) và P ∈ (SBC), suy ra P = (OMN) ∩ (SBC)
Mà N = (OMN) ∩ (SBC), suy ra (OMN) ∩ (SBC) = NP.
• Do P ∈ BC, BC ⊂ (ABC) nên P ∈ (ABC)
Suy ra P = (OMN) ∩ (ABC)
Lại có O = (OMN) ∩ (ABC)
Suy ra (OMN) ∩ (ABC) = OP.
• Trong mp(ABC), gọi Q = OP ∩ AB.
Khi đó Q ∈ (OMN) và Q ∈ (ABC) nên Q = (OMN) ∩ (ABC)
Lại có M ∈ (OMN) và M ∈ (ABC) nên M = (OMN) ∩ (ABC)
Suy ra (OMN) ∩ (ABC) = QM.
Vậy thiết diện do (MNO) cắt tứ diện S.ABC là (MNPQ).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.
a) Chứng minh AF = BE . cosC.
b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.
c) AF và BE cắt nhau tại O. Tính sin góc AOB.
Câu 2:
Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác.
a) Biết AB = 5, IC = 6. Tính BC.
b) Biết \(IB = \sqrt 5 ,IC = \sqrt {10} \).Tính độ dài AB, AC.
Câu 3:
Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó.
Câu 4:
Cho tam giác ABC có AC = 7, AB = 5 và \(\cos A = \frac{3}{5}\). Tính BC, S, ha, R.
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH.
a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.
b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.
c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.
d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.
Câu 6:
Chứng minh rằng trong tam giác ABC ta có các hệ thức:
sin A = sinB.cosC + sinC.cosB.
Câu 7:
Cho tam giác ABC. Chứng minh rằng \(1 + \frac{r}{R} = \cos A + \cos B + \cos C\).
về câu hỏi!