Câu hỏi:

12/07/2024 1,190

giải phương trình:

a) 2sin2x + sinx = 0;

b) sinx + cos3x = 0;

c) sinx + 2cosx = 0;

d) 2sin2 3x = 1;

e) cos2x = 2cosx 1.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 2sin2x + sinx = 0

4sinx.cosx + sinx = 0

sinx(4cosx + 1) = 0

\( \Leftrightarrow \left[ \begin{array}{l}{\mathop{\rm s}\nolimits} {\rm{inx}} = 0\\{\rm{cosx = }}\frac{{ - 1}}{4}\end{array} \right.\)

 \( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = k\pi \\{\rm{x = ar}}cc{\rm{os }}\frac{{ - 1}}{4} + k2\pi \\x = - {\rm{ar}}cc{\rm{os }}\frac{{ - 1}}{4} + k2\pi \end{array} \right.\) (k ℤ)

b) sinx + cos3x = 0

\[ \Leftrightarrow sinx + sin\left( {\frac{\pi }{2} - 3x} \right) = 0\]

\[ \Leftrightarrow sinx = sin\left( {3x--\frac{\pi }{2}} \right)\]

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = 3{\rm{x}} - \frac{\pi }{2} + k2\pi \\{\rm{x = }}\pi - 3{\rm{x}} - \frac{\pi }{2} + k2\pi {\rm{ }}\end{array} \right.\)(k ℤ)

\( \Leftrightarrow \left[ \begin{array}{l} - 2{\rm{x}} = - \frac{\pi }{2} + k2\pi \\{\rm{4x = }}\frac{{3\pi }}{2} + k2\pi {\rm{ }}\end{array} \right.\)(k ℤ)

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{\pi }{4} + k\pi \\{\rm{x = }}\frac{{3\pi }}{8} + \frac{{k\pi }}{2}{\rm{ }}\end{array} \right.\)(k ℤ)

c) sinx + 2cosx = 0

sinx = – 2cosx

\( \Leftrightarrow \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}{{{\rm{cosx}}}} = \frac{{ - 2co{\rm{sx}}}}{{\cos x}}\)

tanx = – 2

x = arctan(– 2) + kπ (k ℤ)

d) 2sin2 3x = 1

\[ \Leftrightarrow si{n^2}3x = \frac{1}{2}\]

\( \Leftrightarrow \left[ \begin{array}{l}\sin 3{\rm{x}} = \frac{1}{{\sqrt 2 }}\\\sin 3{\rm{x}} = - \frac{1}{{\sqrt 2 }}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin 3{\rm{x}} = \sin \frac{\pi }{4}\\\sin 3{\rm{x}} = \sin \frac{{ - \pi }}{4}\end{array} \right.\)

 \( \Leftrightarrow \left[ \begin{array}{l}3{\rm{x}} = \frac{\pi }{4} + k2\pi \\3{\rm{x}} = \pi - \frac{\pi }{4} + k2\pi \\3{\rm{x}} = \frac{{ - \pi }}{4} + k2\pi \\3{\rm{x}} = \pi + \frac{\pi }{4} + k2\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{\pi }{{12}} + \frac{{k2\pi }}{3}\\{\rm{x}} = \frac{\pi }{4} + \frac{{k2\pi }}{3}\\{\rm{x}} = \frac{{ - \pi }}{{12}} + \frac{{k2\pi }}{3}\\{\rm{x}} = \frac{{5\pi }}{{12}} + \frac{{k2\pi }}{3}\end{array} \right.\) (k ℤ)

e) cos2x = 2cosx – 1

2cos2x – 1 = 2cosx – 1

2cos2x – 2cosx = 0

2cosx(cosx – 1) = 0

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{cosx = 0}}\\{\rm{cosx = 1}}\end{array} \right.\)

\[ \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{\pi }{2} + k\pi \\{\rm{x = }}k2\pi {\rm{ }}\end{array} \right.\] (k ℤ)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó.

Xem đáp án » 12/07/2024 6,306

Câu 2:

Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.

a) Chứng minh AF = BE . cosC.

b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.

c) AF và BE cắt nhau tại O. Tính sin góc AOB.

Xem đáp án » 12/07/2024 5,988

Câu 3:

Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác.

a) Biết AB = 5, IC = 6. Tính BC.

b) Biết \(IB = \sqrt 5 ,IC = \sqrt {10} \).Tính độ dài AB, AC.

Xem đáp án » 12/07/2024 5,686

Câu 4:

Cho tam giác ABC có AC = 7, AB = 5 và \(\cos A = \frac{3}{5}\). Tính BC, S, ha, R.

Xem đáp án » 12/07/2024 5,519

Câu 5:

Cho tam giác ABC vuông tại A, đường cao AH.

a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.

b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.

c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.

d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.

Xem đáp án » 12/07/2024 4,691

Câu 6:

Chứng minh rằng trong tam giác ABC ta có các hệ thức:

sin A = sinB.cosC + sinC.cosB.

Xem đáp án » 12/07/2024 3,790

Câu 7:

Cho tam giác ABC. Chứng minh rằng \(1 + \frac{r}{R} = \cos A + \cos B + \cos C\).

Xem đáp án » 12/07/2024 2,934

Bình luận


Bình luận