Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+) Xét m = 0
Phương trình (*) ⇔ 1 = 0 (vô lý)
+) Xét m ≠ 0
Phương trình (*) \[ \Leftrightarrow \sin x = \frac{{2m - 1}}{m}\]
Vì – 1 ≤ sin x ≤ 1
Nên phương trình có nghiệm khi \( - 1 \le \frac{{2m - 1}}{m} \le 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{2m - 1}}{2} \ge - 1\\\frac{{2m - 1}}{2} \le 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{3m - 1}}{m} \ge 0\\\frac{{m - 1}}{m} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m \ge \frac{1}{3}\\m \le 0\end{array} \right.\\0 \le m \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\\frac{1}{3} \le m \le 1\end{array} \right.\)
Mà m ≠ 0
Suy ra \(\frac{1}{3} \le m \le 1\)
Vậy \(\frac{1}{3} \le m \le 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.
a) Chứng minh AF = BE . cosC.
b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.
c) AF và BE cắt nhau tại O. Tính sin góc AOB.
Câu 2:
Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác.
a) Biết AB = 5, IC = 6. Tính BC.
b) Biết \(IB = \sqrt 5 ,IC = \sqrt {10} \).Tính độ dài AB, AC.
Câu 3:
Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó.
Câu 4:
Cho tam giác ABC có AC = 7, AB = 5 và \(\cos A = \frac{3}{5}\). Tính BC, S, ha, R.
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH.
a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.
b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.
c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.
d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.
Câu 6:
Chứng minh rằng trong tam giác ABC ta có các hệ thức:
sin A = sinB.cosC + sinC.cosB.
Câu 7:
Cho tam giác ABC. Chứng minh rằng \(1 + \frac{r}{R} = \cos A + \cos B + \cos C\).
về câu hỏi!