Câu hỏi:
27/04/2023 420Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao ?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Ta có:
AB song song với CD (gt)
OE vuông góc với AB (gt)
Do đó, OE vuông góc với CD
OG vuông góc với CD (gt)
Suy ra OE trùng với OG nên ba điểm O, E, G thẳng hàng
BC song song với AD (gt)
OF vuông góc với BC (gt)
Do đó, OF vuông góc với AD
Suy ra, OF trùng với OH nên ba điểm O, H, F thẳng hàng
Vì AC và BD là đường phân giác các góc của hình thoi nên:
OE = OF (tính chất tia phân giác) (1)
OE = OH (tính chất tia phân giác) (2)
OH = OG (tính chất tia phân giác) (3)
Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên nó là hình chữ nhật.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
EF vuông góc với AB do đó \(\widehat {AFE} = 90^\circ \)
ED vuông góc với AC do đó \(\widehat {ADE} = 90^\circ \)
Tứ giác ADEF có:
\(\widehat {FAD} = 90^\circ \)
\(\widehat {AFE} = 90^\circ \)
\(\widehat {ADE} = 90^\circ \)
Do đó, ADEF là hình chữ nhật
b)
K đối xứng với E qua D
Do đó D là trung điểm của EK
ED vuông góc với AC, AB vuông góc với AC
Do đó, ED song song với AB
Tam giác ABC có:
E là trung điểm của BC
ED song song với AB
Do đó, D là trung điểm của AC
Tứ giác AECK có:
D là trung điểm của AC, EK
Do đó, AECK là hình bình hành mà EK vuông góc với AC
Do đó, AECK là hình thoi
c)
ADEF là hình chữ nhật, DF và AE giao nhau tại O
Nên O là trung điểm của DF, AE và DF = AE
AECK là hình thoi nên AK = EC, AK song song với EC
AK = EC, BE = EC nên AK = BE
Tứ giác ABEK có:
AK = BE
AK song song với BE
Do đó, ABEK là hình bình hành
Do đó, AE, BK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AE, O là trung điểm của BK
Do đó, B, O, K thẳng hàng
d)
Tam giác AME vuông tại M có MO là đường trung tuyến
\(MO = \frac{1}{2}AE = \frac{1}{2}DF\)
Tam giác FMD có:
\(MO = \frac{1}{2}DF\)
MO là đường trung tuyến
Do đó, FMD vuông tại M
\( \Rightarrow \widehat {DMF} = 90^\circ \)
Lời giải
\(\sin A = \cos B + \cos C = 2cos\frac{{B + C}}{2}.cos\frac{{B - C}}{2}\)
\( = 2\sin \frac{A}{2}.cos\frac{{B - C}}{2}\)
\( \Leftrightarrow 2\sin \frac{A}{2}.cos\frac{A}{2} = 2\sin \frac{A}{2}.cos\frac{{B - C}}{2}\)
\( \Leftrightarrow cos\frac{A}{2} = cos\frac{{B - C}}{2} \Rightarrow \frac{A}{2} = \frac{{B - C}}{2}\)
\(\begin{array}{l} \Rightarrow \widehat B = \widehat A + \widehat C\\ \Rightarrow 2\widehat B = 180^\circ \Rightarrow \widehat B = 90^\circ \end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận