Câu hỏi:

19/08/2025 4,585 Lưu

Cho hàm số y = 2x + 3 và \(y = \frac{{ - 1}}{2}x - 2\).

a) Vẽ đồ thị hàm số trên cùng 1 mặt phẳng tọa độ.

b) Tìm tọa độ của điểm C của 2 đồ thị trên.

c) Tính diện tích tam giác ABC biết A, B lần lượt là giao điểm của 2 đường thẳng trên trục tung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đồ thị hàm số y = 2x + 3 cắt trục hoành tại điểm có hoành độ là \( - \frac{3}{2}\) và cắt trục tung tại điểm có tung độ là 3.

Vậy đồ thị trên đi qua hai điểm \(\left( { - \frac{3}{2};\;0} \right)\)\(\left( {0;\;3} \right)\).

Đồ thị hàm số \(y = \frac{{ - 1}}{2}x - 2\) cắt trục hoành tại điểm có hoành độ là −4 và cắt trục tung tại điểm có tung độ là −2.

Vậy đồ thị trên đi qua hai điểm \(\left( { - 4;\;0} \right)\)\(\left( {0;\; - 2} \right)\).

Ta có đồ thị hàm số của hai đường thẳng trên:

cho hàm số y = 2x + 3 và y = -1/(2x - 2) a) Vẽ đồ thị hàm số trên cùng 1 mặt phẳng tọa độ (ảnh 1)

b) C là giao điểm của hai đường thẳng trên nên hoành độ giao điểm của C là nghiệm của phương trình:

\(2x + 3 = \frac{{ - 1}}{2}x - 2 \Leftrightarrow x = - 2\)

Þ y = −1.

Vậy C(−2; −1).

c) Ta có A(0; 3) và B(0; −2)

\(AC = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} = 2\sqrt 5 \);

\(BC = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}} = \sqrt 5 \).

\(2\,\,.\,\,\left( { - \frac{1}{2}} \right) = - 1\) nên hai đường thẳng trên vuông góc với nhau.

Vậy diện tích tam giác ABC vuông tại C là:

\({S_{ABC}} = \frac{1}{2}AC\,.\,BC = \frac{1}{2}\,\,.\,\,2\sqrt 5 \,\,.\,\,\sqrt 5 = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác  (ảnh 1)

a) Ta có :

DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)

CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)

\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)

Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI

Suy ra CDIK là tứ giác nội tiếp.

b) Ta có:

\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))

Xét ∆HCD và ∆ABC có:

\(\widehat {HCD} = \widehat {ABC}\) (cmt )

\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)

Suy ra ∆ABC ∆HCD (g.g)

\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )

Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)

\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)

Suy ra AD.AC = DH.AB (đpcm)

c) Gọi giao điểm của BN với AD là F'.

Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)

\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)

\(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)

Từ đó ∆F'AN ∆F'BA (g.g)

\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)

Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N

Þ F'A = F'D Þ F' ≡ F.

Từ đó ta có đpcm.

Lời giải

a) Hàm số \(y = \frac{1}{2}{x^2}\).

Bảng giá trị:

x

– 2

– 1

0

1

2

y

2

\(\frac{1}{2}\)

0

\(\frac{1}{2}\)

2

Đồ thị (P) của hàm số \(y = \frac{1}{2}{x^2}\)

Cho hàm số y = 1/2x^2 a) vẽ đồ thị (P) của hàm số. b) Tìm trên (P) những điểm (ảnh 1)

b) Điểm cách đều hai trục tọa độ nằm trên đường thẳng: y = x hoặc y = x.

Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:

\(\frac{1}{2}{x^2} = x\) x2 – 2x = 0 x(x – 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)

• Với x = 0 y = 0 điểm O (0; 0)

• Với x = 2 y = 2 điểm A (2; 2)

Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:

\(\frac{1}{2}{x^2} = - x\) x2 + 2x = 0 x(x + 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right.\)

Với x = 0 y = 0 điểm O (0; 0)

Với x = 2 y = 2 điểm B (2; 2)

Vậy có hai đểm A (2; 2) và B (2; 2) trên (P) cách đều hai trục tọa độ.

c) Gọi điểm\(M\left( {{x_0};\,\,\frac{9}{2}} \right)\) (P)

\( \Rightarrow \frac{9}{2} = \frac{1}{2}{\left( {{x_0}} \right)^2} \Leftrightarrow {\left( {{x_0}} \right)^2} = 9\)\[ \Leftrightarrow {x_0} = \left| 3 \right| \Rightarrow {x_0} = \pm 3\] ;

Vậy \({M_1}\left( {3;\,\,\frac{9}{2}} \right)\); \({M_2}\left( { - 3;\,\,\frac{9}{2}} \right) \in \left( P \right)\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP