Cho hai hàm số: y = 2x – 3 và \(y = \frac{{ - 1}}{2}x + 2\) có đồ thị lần lượt là các đường thẳng (d1) và (d2).
a) Vẽ trên cùng một hệ trục tọa độ các đường thẳng (d1) và (d2).
b) Tìm tọa độ giao điểm hai đường thẳng (d1) và (d2) bằng phép toán.
c) Tính góc tạo bởi đường thẳng (d1) và trục Ox.
Cho hai hàm số: y = 2x – 3 và \(y = \frac{{ - 1}}{2}x + 2\) có đồ thị lần lượt là các đường thẳng (d1) và (d2).
a) Vẽ trên cùng một hệ trục tọa độ các đường thẳng (d1) và (d2).
b) Tìm tọa độ giao điểm hai đường thẳng (d1) và (d2) bằng phép toán.
c) Tính góc tạo bởi đường thẳng (d1) và trục Ox.
Quảng cáo
Trả lời:

a) Đồ thị hàm số y = 2x − 3 cắt trục hoành tại điểm có hoành độ là \(\frac{3}{2}\) và cắt trục tung tại điểm có tung độ là −3.
Vậy đồ thị trên đi qua hai điểm \(\left( {\frac{3}{2};\;0} \right)\) và \(\left( {0;\; - 3} \right)\).
Đồ thị hàm số \(y = \frac{{ - 1}}{2}x + 2\) cắt trục hoành tại điểm có hoành độ là 4 và cắt trục tung tại điểm có tung độ là 2.
Vậy đồ thị trên đi qua hai điểm (4; 0) và (0; 2).
Ta có đồ thị hàm số của hai đường thẳng trên:

b) C là giao điểm của hai đường thẳng trên nên hoành độ giao điểm của C là nghiệm của phương trình:
\(2x - 3 = \frac{{ - 1}}{2}x + 2 \Leftrightarrow x = 2\)
Þ y = 1
Vậy C(2; 1)
c) Ta có A(0; −3) và B(0; 2)
\(AC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 + 3} \right)}^2}} = 2\sqrt 5 \)
\(BC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 - 2} \right)}^2}} = \sqrt 5 \)
Vì \(2\,.\,\left( { - \frac{1}{2}} \right) = - 1\) nên hai đường thẳng trên vuông góc với nhau.
Vậy diện tích tam giác ABC vuông tại C là:
\({S_{ABC}} = \frac{1}{2}AC\,.\,BC = \frac{1}{2}\,.\,2\sqrt 5 \,.\,\sqrt 5 = 5\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có :
DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)
CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)
\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI
Suy ra CDIK là tứ giác nội tiếp.
b) Ta có:
\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))
Xét ∆HCD và ∆ABC có:
\(\widehat {HCD} = \widehat {ABC}\) (cmt )
\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆HCD (g.g)
\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)
Suy ra AD.AC = DH.AB (đpcm)
c) Gọi giao điểm của BN với AD là F'.
Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)
\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)
Mà \(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)
Từ đó ∆F'AN ᔕ ∆F'BA (g.g)
\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)
Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N
Þ F'A = F'D Þ F' ≡ F.
Từ đó ta có đpcm.
Lời giải
a) Hàm số \(y = \frac{1}{2}{x^2}\).
Bảng giá trị:
x |
– 2 |
– 1 |
0 |
1 |
2 |
y |
2 |
\(\frac{1}{2}\) |
0 |
\(\frac{1}{2}\) |
2 |
Đồ thị (P) của hàm số \(y = \frac{1}{2}{x^2}\)

b) Điểm cách đều hai trục tọa độ nằm trên đường thẳng: y = x hoặc y = – x.
Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:
\(\frac{1}{2}{x^2} = x\)⟺ x2 – 2x = 0 ⇔ x(x – 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)
• Với x = 0 ⇒ y = 0 ⇒ điểm O (0; 0)
• Với x = 2 ⇒ y = 2 ⇒ điểm A (2; 2)
Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = − x:
\(\frac{1}{2}{x^2} = - x\)⟺ x2 + 2x = 0 ⇔ x(x + 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right.\)
Với x = 0 ⇒ y = 0 ⇒ điểm O (0; 0)
Với x = −2 ⇒ y = 2 ⇒ điểm B (−2; 2)
Vậy có hai đểm A (2; 2) và B (−2; 2) trên (P) cách đều hai trục tọa độ.
c) Gọi điểm\(M\left( {{x_0};\,\,\frac{9}{2}} \right)\)∈ (P)
\( \Rightarrow \frac{9}{2} = \frac{1}{2}{\left( {{x_0}} \right)^2} \Leftrightarrow {\left( {{x_0}} \right)^2} = 9\)\[ \Leftrightarrow {x_0} = \left| 3 \right| \Rightarrow {x_0} = \pm 3\] ;
Vậy \({M_1}\left( {3;\,\,\frac{9}{2}} \right)\); \({M_2}\left( { - 3;\,\,\frac{9}{2}} \right) \in \left( P \right)\) .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.