Câu hỏi:
13/07/2024 4,324Cho hai hàm số: y = 2x – 3 và \(y = \frac{{ - 1}}{2}x + 2\) có đồ thị lần lượt là các đường thẳng (d1) và (d2).
a) Vẽ trên cùng một hệ trục tọa độ các đường thẳng (d1) và (d2).
b) Tìm tọa độ giao điểm hai đường thẳng (d1) và (d2) bằng phép toán.
c) Tính góc tạo bởi đường thẳng (d1) và trục Ox.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Đồ thị hàm số y = 2x − 3 cắt trục hoành tại điểm có hoành độ là \(\frac{3}{2}\) và cắt trục tung tại điểm có tung độ là −3.
Vậy đồ thị trên đi qua hai điểm \(\left( {\frac{3}{2};\;0} \right)\) và \(\left( {0;\; - 3} \right)\).
Đồ thị hàm số \(y = \frac{{ - 1}}{2}x + 2\) cắt trục hoành tại điểm có hoành độ là 4 và cắt trục tung tại điểm có tung độ là 2.
Vậy đồ thị trên đi qua hai điểm (4; 0) và (0; 2).
Ta có đồ thị hàm số của hai đường thẳng trên:
b) C là giao điểm của hai đường thẳng trên nên hoành độ giao điểm của C là nghiệm của phương trình:
\(2x - 3 = \frac{{ - 1}}{2}x + 2 \Leftrightarrow x = 2\)
Þ y = 1
Vậy C(2; 1)
c) Ta có A(0; −3) và B(0; 2)
\(AC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 + 3} \right)}^2}} = 2\sqrt 5 \)
\(BC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 - 2} \right)}^2}} = \sqrt 5 \)
Vì \(2\,.\,\left( { - \frac{1}{2}} \right) = - 1\) nên hai đường thẳng trên vuông góc với nhau.
Vậy diện tích tam giác ABC vuông tại C là:
\({S_{ABC}} = \frac{1}{2}AC\,.\,BC = \frac{1}{2}\,.\,2\sqrt 5 \,.\,\sqrt 5 = 5\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có :
DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)
CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)
\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI
Suy ra CDIK là tứ giác nội tiếp.
b) Ta có:
\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))
Xét ∆HCD và ∆ABC có:
\(\widehat {HCD} = \widehat {ABC}\) (cmt )
\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆HCD (g.g)
\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)
Suy ra AD.AC = DH.AB (đpcm)
c) Gọi giao điểm của BN với AD là F'.
Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)
\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)
Mà \(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)
Từ đó ∆F'AN ᔕ ∆F'BA (g.g)
\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)
Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N
Þ F'A = F'D Þ F' ≡ F.
Từ đó ta có đpcm.
Lời giải
Số cách sắp xếp học sinh ba khối 10, 11 và 12 là: 3!;
Số cách sắp xếp các học sinh giỏi khối 12 là: 4!;
Số cách sắp xếp các học sinh giỏi khối 11 là: 5!;
Số cách sắp xếp các học sinh giỏi khối 10 là: 6!;
Vậy số cách sắp xếp 15 học sinh thành hàng ngang để đón đại biểu là: 3!.4!.5!.6!
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận