Câu hỏi:

13/07/2024 4,170

Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên Ax, không trùng với A. Gọi E là điểm đối xứng với A qua OM.

a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O)

b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME

c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R.

c) Gọi C là giao điểm của BE và tia Ax, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng  (ảnh 1)

a) Ta có A, E đối xứng qua OM Þ MA = ME, OA = OE

Þ OE = R nên E thuộc đường tròn (O)

Xét ∆MAO và ∆MEO

OM: cạnh chung

MA = ME (cmt)

OA = OE (cmt)

Þ ∆MAO = ∆MEO (c.c.c)

\( \Rightarrow \widehat {MEO} = \widehat {MAO} = 90^\circ \)

Suy ra ME là tiếp tuyến của đường tròn (O)

b) Ta có: A và E đối xứng qua OM suy ra MO là trung trực của AE

Mà I Î OM Þ IA = IE

Lại có MA là tiếp tuyến của (O)

\( \Rightarrow \widehat {MAI} = \widehat {IEA} = \widehat {IAE}\)

Suy ra AI là phân giác của \(\widehat {MAE}\)

Tương tự ta có EI là phân giác của \(\widehat {MEA}\)

Suy ra I là tâm đường tròn nội tiếp ∆AME

c) Ta có N là trung điểm của BE Þ ON ^ BE Þ OP ^ BE

Do AB là đường kính của (O) Þ AE ^ EB

Mà MO là trung trực của AE Þ MO // BE

Þ MO ^ OP vì OP ^ BE

Suy ra ΔOMP vuông tại O

Lại có OE ^ MP

Þ EM.EP = OE2 = R2

\( \Rightarrow {S_{OMP}} = \frac{1}{2}OE\,.\,MP = \frac{1}{2}R\,.\,\left( {ME + EP} \right) \ge \frac{1}{2}R\,.\,\sqrt {ME\,.\,EP} = {R^2}\)

Dấu “=” xảy ra khi  ME = EP = R

Þ ΔMEO vuông cân tại E

\( \Rightarrow OM = R\sqrt 2 = OA\sqrt 2 \Rightarrow MA = R\)

d) Gọi QD ∩ AB = F, AE ∩ BP = G

Ta có OP // AE (^ BE), O là trung điểm AB

Suy ra OP là đường trung bình ΔABG

Suy ra P là trung điểm của PG hay PG = PB

Ta có BE ∩ AM = C

Tương tự ta có M là trung điểm của AC hay MA = MC

Lại có QF // AC

\( \Rightarrow \frac{{QD}}{{MC}} = \frac{{OD}}{{OM}} = \frac{{DF}}{{MA}}\)

Þ QD = DF Þ D là trung điểm của QF

Ta có QF // BG (^ AB)

\( \Rightarrow \frac{{AF}}{{AB}} = \frac{{QF}}{{GB}} = \frac{{2DF}}{{2BP}} = \frac{{DF}}{{BP}}\)

Lại có \(\widehat {AFD} = \widehat {ABP} = 90^\circ \)

Suy ra ΔAFD ΔABP (c.g.c)

\( \Rightarrow \widehat {DAF} = \widehat {PAB}\)

Suy ra A, D, P thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác  (ảnh 1)

a) Ta có :

DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)

CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)

\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)

Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI

Suy ra CDIK là tứ giác nội tiếp.

b) Ta có:

\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))

Xét ∆HCD và ∆ABC có:

\(\widehat {HCD} = \widehat {ABC}\) (cmt )

\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)

Suy ra ∆ABC ∆HCD (g.g)

\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )

Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)

\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)

Suy ra AD.AC = DH.AB (đpcm)

c) Gọi giao điểm của BN với AD là F'.

Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)

\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)

\(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)

Từ đó ∆F'AN ∆F'BA (g.g)

\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)

Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N

Þ F'A = F'D Þ F' ≡ F.

Từ đó ta có đpcm.

Lời giải

Số cách sắp xếp học sinh ba khối 10, 11 và 12 là: 3!;

Số cách sắp xếp các học sinh giỏi khối 12 là: 4!;

Số cách sắp xếp các học sinh giỏi khối 11 là: 5!;

Số cách sắp xếp các học sinh giỏi khối 10 là: 6!;

Vậy số cách sắp xếp 15 học sinh thành hàng ngang để đón đại biểu là: 3!.4!.5!.6!

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP