Gieo một con súc sắc cân đối đồng chất hai lần. Tính xác suất của biến cố:
a) Tổng số chấm hai mặt xuất hiện bằng 8.
b) Tích số chấm hai mặt xuất hiện là số lẻ.
Gieo một con súc sắc cân đối đồng chất hai lần. Tính xác suất của biến cố:
a) Tổng số chấm hai mặt xuất hiện bằng 8.
b) Tích số chấm hai mặt xuất hiện là số lẻ.
Quảng cáo
Trả lời:

Vì một con xúc xắc có 6 mặt và khi gieo hai lần thì số phần tử của không gian mẫu là \(\left| \Omega \right| = \left| {6.6} \right| = 36\);
Gọi A là biến cố để tổng số chấm hai mặt xuất hiện bằng 8;
Các kết quả của biến cố A là: A = {(2;6),(3;5),(4;4),(5;3),(6;2)}
Số các kết quả của biến cố A là: 5;
Xác suất để tổng số chấm hai mặt xuất hiện bằng 8 là: \(P(A) = \frac{5}{{36}}\);
b) Gọi B là biến cố: “Tích số chấm hai mặt xuất hiện là số lẻ ”
Tích số chấm hai mặt xuất hiện là số lẻ khi ở cả hai lần gieo đểu xuất hiện số lẻ nên có 3.3 = 9 cách gieo
Xác suất của tích số chấm hai mặt xuất hiện số lẻ là: \(P(B) = \frac{9}{{36}} = \frac{1}{4}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có :
DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)
CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)
\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI
Suy ra CDIK là tứ giác nội tiếp.
b) Ta có:
\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))
Xét ∆HCD và ∆ABC có:
\(\widehat {HCD} = \widehat {ABC}\) (cmt )
\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆HCD (g.g)
\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)
Suy ra AD.AC = DH.AB (đpcm)
c) Gọi giao điểm của BN với AD là F'.
Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)
\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)
Mà \(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)
Từ đó ∆F'AN ᔕ ∆F'BA (g.g)
\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)
Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N
Þ F'A = F'D Þ F' ≡ F.
Từ đó ta có đpcm.
Lời giải
a) Hàm số \(y = \frac{1}{2}{x^2}\).
Bảng giá trị:
x |
– 2 |
– 1 |
0 |
1 |
2 |
y |
2 |
\(\frac{1}{2}\) |
0 |
\(\frac{1}{2}\) |
2 |
Đồ thị (P) của hàm số \(y = \frac{1}{2}{x^2}\)

b) Điểm cách đều hai trục tọa độ nằm trên đường thẳng: y = x hoặc y = – x.
Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:
\(\frac{1}{2}{x^2} = x\)⟺ x2 – 2x = 0 ⇔ x(x – 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)
• Với x = 0 ⇒ y = 0 ⇒ điểm O (0; 0)
• Với x = 2 ⇒ y = 2 ⇒ điểm A (2; 2)
Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = − x:
\(\frac{1}{2}{x^2} = - x\)⟺ x2 + 2x = 0 ⇔ x(x + 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right.\)
Với x = 0 ⇒ y = 0 ⇒ điểm O (0; 0)
Với x = −2 ⇒ y = 2 ⇒ điểm B (−2; 2)
Vậy có hai đểm A (2; 2) và B (−2; 2) trên (P) cách đều hai trục tọa độ.
c) Gọi điểm\(M\left( {{x_0};\,\,\frac{9}{2}} \right)\)∈ (P)
\( \Rightarrow \frac{9}{2} = \frac{1}{2}{\left( {{x_0}} \right)^2} \Leftrightarrow {\left( {{x_0}} \right)^2} = 9\)\[ \Leftrightarrow {x_0} = \left| 3 \right| \Rightarrow {x_0} = \pm 3\] ;
Vậy \({M_1}\left( {3;\,\,\frac{9}{2}} \right)\); \({M_2}\left( { - 3;\,\,\frac{9}{2}} \right) \in \left( P \right)\) .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.