Câu hỏi:
12/07/2024 190Giả sử cần lưu dãy các bước chuyển của bài toán Tháp Hà Nội vào một danh sách để có thể sử dụng lại về sau. Mỗi bước chuyển dạng k: i → j sẽ được lưu trong một bộ ba số (k, i, j). Viết chương trình giải bài toán Tháp Hà Nội tổng quát Hanoi(n, i, j, k) chuyển n đĩa từ cọc i sang cọc j lấy cọc k làm trung gian với yêu cầu lưu tất cả các bước chuyển vào một danh sách (list). Như vậy, hàm Hanoi(n, i, j, k) sẽ trả về một danh sách bao gồm các bộ ba số dạng như đã mô tả ở trên.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Để giải bài toán Tháp Hà Nội và lưu các bước chuyển vào một danh sách, ta có thể sử dụng thuật toán đệ quy. Trong mỗi lần đệ quy, ta sẽ chuyển n-1 đĩa từ cọc ban đầu sang cọc trung gian, sau đó chuyển đĩa lớn nhất từ cọc ban đầu sang cọc đích và cuối cùng chuyển n-1 đĩa từ cọc trung gian sang cọc đích.
Ví dụ, để chuyển 3 đĩa từ cọc A sang cọc C lấy cọc B làm trung gian, ta có thể gọi hàm Hanoi(3, 'A', 'C', 'B') và kết quả trả về sẽ là danh sách các bước chuyển [(1, 'A', 'C'), (2, 'A', 'B'), (1, 'C', 'B'), (3, 'A', 'C'), (1, 'B', 'A'), (2, 'B', 'C'), (1, 'A', 'C')].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Viết sơ đồ chi tiết giải bài toán Tháp Hà Nội cho trường hợp n = 4. Tính H(4).
Câu 2:
Hãy chứng minh công thức bằng quy nạp toán học. Hãy tính H(64) và so sánh với con số các bước đã được đưa ra trong tờ quảng cáo của trò chơi vào năm 1883.
Câu 3:
Tính các giá trị H(2), H(3), H(4), H(5) của bài toán Tháp Hà Nội.
Câu 4:
Đọc, tìm hiểu bài toán Tháp Hà Nội và thực hiện giải trò chơi này với số lượng đĩa nhỏ (1, 2, 3). Em có nhận xét gì về lời giải bài toán với n = 1, 2, 3?
Câu 5:
Mô tả lời giải bài toán với trường hợp n = 1, 2, 3 ở trên (không dùng hình vẽ mô tả)
Câu 6:
Viết chương trình giải bài toán Tháp Hà Nội nhưng với tên các cọc là A, B, C.
về câu hỏi!