Câu hỏi:
12/07/2024 226Cho biểu thức:
\(A = \frac{{\sqrt x + 1}}{{\sqrt x - 2}} + \frac{2}{{\sqrt x + 3}} - \frac{{9\sqrt x - 3}}{{x + \sqrt x - 6}}\) và \(B = \frac{{x - \sqrt x + 1}}{{\sqrt x - 1}}\) với x ≥ 0, x ≠ 1, x ≠ 4.
a) Tính giá trị biểu thức B khi x = 9.
b) Rút gọn A.
c) Chứng minh rằng khi A > 0 thì B ≥ 3.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Thay x = 9 (thỏa mãn) vào B ta có
\(B = \frac{{x - \sqrt x + 1}}{{\sqrt x - 1}} = \frac{{9 - \sqrt 9 + 1}}{{\sqrt 9 - 1}} = \frac{{9 - 3 + 1}}{{3 - 1}} = \frac{7}{2}\).
b) Với x ≥ 0, x ≠ 1, x ≠ 4, ta có
\(A = \frac{{\sqrt x + 1}}{{\sqrt x - 2}} + \frac{2}{{\sqrt x + 3}} - \frac{{9\sqrt x - 3}}{{x + \sqrt x - 6}}\)
\(A = \frac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 3} \right) + 2\left( {\sqrt x - 2} \right) - 9\sqrt x + 3}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}\)
\(A = \frac{{x + 4\sqrt x + 3 + 2\sqrt x - 4 - 9\sqrt x + 3}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}\)
\(A = \frac{{x - 3\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}}\)
\(A = \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 3} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x + 3}}\).
c) Với x ≥ 0, x ≠ 1, x ≠ 4, ta có:
A > 0 \[ \Leftrightarrow \frac{{\sqrt x - 1}}{{\sqrt x + 3}} > 0\]
\( \Leftrightarrow \sqrt x - 1 > 0\) (vì \(\sqrt x + 3 > 0\))
\( \Leftrightarrow \sqrt x > 1\)
⇔ x > 1
Ta có \(B = \frac{{x - \sqrt x + 1}}{{\sqrt x - 1}} = \frac{{\sqrt x \left( {\sqrt x - 1} \right) + 1}}{{\sqrt x - 1}} = \sqrt x + \frac{1}{{\sqrt x - 1}}\)
Do \(\sqrt x > 1\) nên \(\sqrt x - 1 > 0\)
Áp dụng bất đẳng thức Cô – si ta có
\(B = \sqrt x - 1 + \frac{1}{{\sqrt x - 1}} + 1 \ge 2\sqrt {\left( {\sqrt x - 1} \right).\frac{1}{{\sqrt x - 1}}} + 1 = 2 + 1 = 3\)
Dấu “ = ” xảy ra khi \(\sqrt x - 1 = \frac{1}{{\sqrt x - 1}}\)
\( \Leftrightarrow {\left( {\sqrt x - 1} \right)^2} = 1 \Leftrightarrow \sqrt x - 1 = 1\) (do \(\sqrt x - 1 > 0\))
Û x = 4 (thỏa mãn).
Vậy khi A > 0 thì B ≥ 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Câu 2:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 3:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 4:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 5:
Câu 6:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 7:
về câu hỏi!