Câu hỏi:
15/05/2023 128Tìm x biết:
a) x5 + x4 + x + 1 = 0;
b) x4 + 3x3 – x – 3 = 0;
c) x3 – 5x2 – x + 5 = 0;
d) x(x – 5) – 4x + 20 = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) x5 + x4 + x + 1 = 0
⇔ x4(x + 1) + (x + 1) = 0
⇔ (x + 1)(x4 + 1) = 0
⇔ x + 1 = 0 (vì x4 + 1 > 0)
⇔ x = – 1
Vậy x = – 1.
b) x4 + 3x3 – x – 3 = 0
⇔ x3(x + 3) – (x + 1) = 0
⇔ (x + 3)(x3 – 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x + 3 = 0\\{x^3} - 1 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 1\end{array} \right.\)
Vậy x ∈ {– 3; 1}.
c) x3 – 5x2 – x + 5 = 0
⇔ x(x2 – 1) – 5(x2 – 1) = 0
⇔ (x2 – 1)(x – 5) = 0
\( \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\x - 5 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 5\end{array} \right.\)
Vậy x ∈ {1; 5; – 1}.
d) x(x – 5) – 4x + 20 = 0
⇔ x(x – 5) – 4(x – 5)= 0
⇔ (x – 4)(x – 5) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x - 4 = 0\\x - 5 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 5\end{array} \right.\)
Vậy x ∈ {4; 5}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Câu 2:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 3:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 4:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 5:
Câu 6:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 7:
về câu hỏi!