Câu hỏi:
12/07/2024 9,461Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O).
b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Gọi O là trung điểm của AH
Xét tam giác AEH vuông tại H có EO là trung tuyến
Suy ra AO = OH = OE
Xét tam giác ADH vuông tại H có DO là trung tuyến
Suy ra AO = OH = OD
Do đó OA = OH = OD = OE
Vậy bốn điểm A; D; H; E cùng nằm trên một đường tròn tâm O
b) Xét tam giác ABC có hai đường cao BD và CE cắt nhau tại H
Suy ra H là trực tâm
Do đó AH ⊥ BC
Mà CE ⊥ AB
Suy ra \(\widehat {E{\rm{A}}H} = \widehat {ECB}\) (1)
Ta có OA = OE nên tam giác OAE cân tại O
Suy ra \(\widehat {E{\rm{AO}}} = \widehat {OEA}\) (2)
Xét tam giác EBC vuông tại E có EM là trung tuyến
Suy ra EM = MC nên tam giác MCE cân tại M
Suy ra \(\widehat {MEC} = \widehat {MCE}\) (3)
Từ (1), (2) và (3) ta có \(\widehat {MEC} = \widehat {A{\rm{E}}O}\)
Mà \(\widehat {OEC} + \widehat {A{\rm{E}}O} = \widehat {A{\rm{E}}C} = 90^\circ \)
Suy ra \(\widehat {OEC} + \widehat {MEC} = \widehat {OEM} = 90^\circ \), hay OE ⊥ EM
Xét (O) có OE ⊥ EM, OE là bán kính
Suy ra ME là tiếp tuyến đường tròn (O)
Vậy ME là tiếp tuyến đường tròn (O).
Đã bán 189
Đã bán 1,3k
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Câu 2:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 3:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 4:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 5:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 6:
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(– 4; 1); B(2; 4); C(2; –2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Triệu Thịnh
19:56 - 30/11/2024
Toàn vô lý