Câu hỏi:

12/07/2024 1,379

Cho tam giác ABC. Gọi P, Q, R lần lượt là trung điểm của các cạnh BC, CA, AB.

a) Xác định điểm N thỏa mãn \(\overrightarrow {NA} + \overrightarrow {NB} + 2\overrightarrow {NC} = \overrightarrow 0 \).

b) Phân tích \(\overrightarrow {AM} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \) với M BC thỏa mãn \(\overrightarrow {BM} = \frac{2}{5}\overrightarrow {BC} \).

c) Với điểm O bất kì, chứng minh \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {ON} \).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Do R là trung điểm của AB nên \(\overrightarrow {NA} + \overrightarrow {NB} = 2\overrightarrow {N{\rm{R}}} \)

Ta có \(\overrightarrow {NA} + \overrightarrow {NB} + 2\overrightarrow {NC} = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {NR} + 2\overrightarrow {NC} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {NR} + \overrightarrow {NC} = \overrightarrow 0 \)

Suy ra N là trung điểm của CR.

b) Ta có\(\overrightarrow {BM} = \frac{2}{5}\overrightarrow {BC} \)

\( \Leftrightarrow \overrightarrow {BA} + \overrightarrow {AM} = \frac{2}{5}\overrightarrow {BA} + \frac{2}{5}\overrightarrow {AC} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{2}{5}\overrightarrow {BA} + \frac{2}{5}\overrightarrow {AC} - \overrightarrow {BA} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} \).

c) Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = \overrightarrow {ON} + \overrightarrow {NA} + \overrightarrow {ON} + \overrightarrow {NB} + 2\overrightarrow {ON} + 2\overrightarrow {NC} \)

\( = 4\overrightarrow {ON} + \overrightarrow {NA} + + \overrightarrow {NB} + 2\overrightarrow {NC} = 4\overrightarrow {ON} \) (vì \(\overrightarrow {NA} + \overrightarrow {NB} + 2\overrightarrow {NC} = \overrightarrow 0 \))

Vậy \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {ON} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.

a) Chứng minh AD . AB = AE . AC.

b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).

c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).

d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.

Xem đáp án » 12/07/2024 34,916

Câu 2:

Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:

a) Đường tròn đường kính AI đi qua K.

b) HK là tiếp tuyến của đường tròn đường kính AI.

Xem đáp án » 12/07/2024 23,420

Câu 3:

Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:

a) MC là tiếp tuyến của đường tròn (O).

b) MC2 = 3R2.

Xem đáp án » 12/07/2024 22,950

Câu 4:

Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:

a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).

b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).

Xem đáp án » 12/07/2024 21,314

Câu 5:

Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.

a) Chứng minh OH . OM không đổi.

b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.

c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).

Xem đáp án » 12/07/2024 21,121

Câu 6:

Cho đường thẳng d1: y = 3mx – m2 và d2: y = 3x + m – 2. Tìm m để d1 và d2 cắt nhau tại một điểm trên trục tung.

Xem đáp án » 12/07/2024 15,635

Câu 7:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A( 4; 1); B(2; 4); C(2; 2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.

Xem đáp án » 15/05/2023 14,383
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua