Câu hỏi:
12/07/2024 2,006Cho tam giác ABC nội tiếp đường tròn tâm O trực tâm H đường kính AD
a) Chứng minh \(\overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {H{\rm{D}}} \).
b) Gọi M là trung điểm BC. Chứng minh \(\overrightarrow {AH} = 2\overrightarrow {OM} \).
c) Gọi H' là điểm đối xứng với H qua O. Chứng minh \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} \).
d) Gọi D' là điểm đối xứng với B qua O. Chứng minh \(\overrightarrow {AH} = \overrightarrow {D'C} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Kẻ đường cao BG, CF của tam giác ABC
Vì H là trực tâm nên H là giao điểm của BG và CF
Vì tam giác ABD nội tiếp (O) đường kính AD
Nên tam giác ABD vuông tại B, suy ra AB ⊥ BD
Mà AB ⊥ CF, do đó BD // CF (quan hệ từ vuông góc đến song song)
Vì tam giác ACD nội tiếp (O) đường kính AD
Nên tam giác ACD vuông tại C, suy ra AC ⊥ CD
Mà AC ⊥ BG, do đó BG // CD (quan hệ từ vuông góc đến song song)
Xét tứ giác BHCD có
BD // CF (chứng minh trên);
BG // CD (chứng minh trên)
Suy ra BHCD là hình bình hành
Do đó \(\overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {H{\rm{D}}} \).
b) Xét hình bình hành BHCD có M là trung điểm BC
BC, HD là hai đường chéo
Suy ra M là trung điểm của HD
Xét tam giác AHD có O là trung điểm của AD, M là trung điểm của HD
Suy ra OM là đường trung bình
Do đó \(OM = \frac{1}{2}AH\)
Suy ra \(\overrightarrow {AH} = 2\overrightarrow {OM} \)
c) Ta có \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HO} + \overrightarrow {OA} + \overrightarrow {HO} + \overrightarrow {OB} + \overrightarrow {HC} \)
\( = 2\overrightarrow {HO} + \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {HC} = 2\overrightarrow {HO} + \overrightarrow {DO} + \overrightarrow {OB} + \overrightarrow {HC} \)
\( = 2\overrightarrow {HO} + \overrightarrow {DB} + \overrightarrow {HC} = 2\overrightarrow {HO} = \overrightarrow {HH'} \)
Vậy \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} \).
d) Xét (O) có △BCD’ và △BAD’ nội tiếp (O) đường kính BD’
Suy ra △BCD’ vuông tại A và △BAD’ vuông tại C
Khi đó AB ⊥ AD’ và BC ⊥ CD’
Ta có AB ⊥ CH, AB ⊥ AD’ nên CH // AD’ (quan hệ từ vuông góc đến song song)
Ta có BC ⊥ AH, BC ⊥ CD’ nên AH // CD’ (quan hệ từ vuông góc đến song song)
Xét tứ giác AHCD’ có
CH // AD’ và AH // CD’ (chứng minh trên)
Suy ra AHCD’ là hình bình hành
Do đó AH = D’C
Suy ra \(\overrightarrow {AH} = \overrightarrow {D'C} \).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Câu 2:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 3:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 4:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 5:
Câu 6:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 7:
về câu hỏi!