Câu hỏi:
15/05/2023 358Giải hệ phương trình:
a) \(\left\{ \begin{array}{l}{x^3} + {y^3} = 1\\{x^2}y + 2{\rm{x}}{y^2} + {y^3} = 2\end{array} \right.\).
b) \(\left\{ \begin{array}{l}{y^2} = \left( {x + 8} \right)\left( {{x^2} + 2} \right)\\{y^2} - 4\left( {{\rm{x + 2}}} \right)y + 16 + 16{\rm{x}} - 5{{\rm{x}}^2} = 0\end{array} \right.\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(\left\{ \begin{array}{l}{x^3} + {y^3} = 1\\{x^2}y + 2{\rm{x}}{y^2} + {y^3} = 2\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2{x^3} + 2{y^3} = 2\\{x^2}y + 2{\rm{x}}{y^2} + {y^3} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + {y^3} = 1\\2{{\rm{x}}^3} + {y^3} - {x^2}y - 2{\rm{x}}{y^2} = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^3} + {y^3} = 1\\{{\rm{x}}^2}\left( {2{\rm{x}} - y} \right) + {y^2}\left( {y - 2{\rm{x}}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + {y^3} = 1\\\left( {2{\rm{x}} - y} \right)\left( {{x^2} - {y^2}} \right) = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^3} + {y^3} = 1\\\left( {2{\rm{x}} - y} \right)\left( {x - y} \right)\left( {x + y} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + {y^3} = 1\\\left[ \begin{array}{l}2{\rm{x}} - y = 0\\x - y = 0\\x + y = 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^3} + {y^3} = 1\\\left[ \begin{array}{l}2{\rm{x = y}}\\x = y\\x = - y\end{array} \right.\end{array} \right.\)
• \[\left\{ \begin{array}{l}{x^3} + {y^3} = 1\\y = 2{\rm{x}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + 8{{\rm{x}}^3} = 1\\y = 2{\rm{x}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \sqrt[3]{{\frac{1}{9}}}\\y = 2{\rm{x}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \sqrt[3]{{\frac{1}{9}}}\\y = 2\sqrt[3]{{\frac{1}{9}}}\end{array} \right.\]
Þ Hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {\sqrt[3]{{\frac{1}{9}}};2\sqrt[3]{{\frac{1}{9}}}} \right)\).
• \(\left\{ \begin{array}{l}{x^3} + {y^3} = 1\\x = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{{\rm{x}}^3} = 1\\x = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}} = \sqrt[3]{{\frac{1}{2}}}\\x = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}} = \sqrt[3]{{\frac{1}{2}}}\\y = \sqrt[3]{{\frac{1}{2}}}\end{array} \right.\)
Þ Hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {\sqrt[3]{{\frac{1}{2}}};\sqrt[3]{{\frac{1}{2}}}} \right)\).
• \[\left\{ \begin{array}{l}{x^3} + {y^3} = 1\\x = - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - {y^3} + {y^3} = 1\\x = - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0{y^3} = 1\left( {v\^o {\rm{ }}l\'i } \right)\\x = - y\end{array} \right.\]
Vậy hệ phương trình đã cho có tập nghiệm là \(S = \left\{ {\left( {\sqrt[3]{{\frac{1}{9}}};2\sqrt[3]{{\frac{1}{9}}}} \right);\left( {\sqrt[3]{{\frac{1}{2}}};\sqrt[3]{{\frac{1}{2}}}} \right)} \right\}\).
b) \(\left\{ \begin{array}{l}{y^2} = \left( {x + 8} \right)\left( {{x^2} + 2} \right)\\{y^2} - 4\left( {{\rm{x + 2}}} \right)y + 16 + 16{\rm{x}} - 5{{\rm{x}}^2} = 0\end{array} \right.\)
Ta có
⇔ \(\left[ \begin{array}{l}x + y - 4 = 0\\y - 5{\rm{x}} - 4 = 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}y = 4 - x\\y = 5{\rm{x + }}4\end{array} \right.\)
+) Nếu y = 5x + 4
y2 = (x + 8)(x2 + 2)
⇔ (5x + 4)2 = (x + 8)(x2 + 2)
⇔ 25x2 – 40x + 16 = x3 + 2x + 8x2 + 16
⇔ x3 – 17x2 + 42x = 0
⇔ x(x2 – 17x + 42) = 0
⇔ x(x – 3)(x – 14) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4\\x = 3 \Rightarrow y = 19\\x = 14 \Rightarrow y = 74\end{array} \right.\)
+) Nếu y = 4 – x
y2 = (x + 8)(x2 + 2)
⇔ (4 – x)2 = (x + 8)(x2 + 2)
⇔ x2 – 8x + 16 = x3 + 2x + 8x2 + 16
⇔ x3 + 7x2 + 10x = 0
⇔ x(x2 + 7x + 10) = 0
⇔ x(x + 2)(x + 5) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 4\\x = - 2 \Rightarrow y = 6\\x = - 5 \Rightarrow y = 9\end{array} \right.\)
Vậy hệ phương trình đã cho có tập nghiệm là S = {(0; 4); (3; 19); (14; 74); (0; 4); (–2; 6); (–5; 9)}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Câu 2:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 3:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 4:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 5:
Câu 6:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 7:
về câu hỏi!